• 제목/요약/키워드: EMG data preprocessing

검색결과 5건 처리시간 0.016초

EMG 데이터를 이용한 머신러닝 기반 실시간 제스처 분류 연구 (A Study on Machine Learning-Based Real-Time Gesture Classification Using EMG Data)

  • 박하제;양희영;최소진;김대연;남춘성
    • 인터넷정보학회논문지
    • /
    • 제25권2호
    • /
    • pp.57-67
    • /
    • 2024
  • 사용자가 제스처를 통해 입력을 할 수 있는 방안들 중에서 근전도(EMG, Electromyography)를 통한 제스처 인식은 근육 내 작은 전극을 통해 사용자의 움직임을 감지하고 이를 입력 방법으로 사용할 수 있는 방법이다. EMG 데이터를 통해 사용자 제스처를 분류하기 위해서는 사용자로부터 수집된 EMG Raw 데이터를 머신러닝으로 학습하여야 하는데 이를 위해서는 EMG 데이터를 전처리 과정을 통해 특징을 추출하여야 한다. EMG 특성은 IEMG(Integrated EMG), MAV(Mean Absolute Value), SSI(Simple Sqaure Integral), VAR(VARiance), RMS(Root Mean Square) 등과 같은 수식을 통해서 나타낼 수 있다. 또한, 제스처를 입력으로 사용하기 위해서는 사용자가 입력하는 데 필요한 지각, 인지, 반응에 필요한 시간을 기준으로 제스처 분류가 가능한 시간을 알아내야 한다. 이를 위해 최대 1,000ms에서 최소 100ms까지 세그먼트 사이즈를 변화시켜 특징을 추출 후 제스처 분류가 가능한 세그먼트 사이즈를 찾아낸다. 특히 데이터 학습은 overlapped segmentation 방법을 통해 데이터와 데이터 사이 간격을 줄여 학습 데이터 개수를 늘린다. 이를 통해 KNN, SVC, RF, XGBoost 4가지 머신러닝 방식을 통해 이를 학습하고 결과를 도출한다. 실험 결과 실시간으로 사용자의 제스처 입력이 가능한 최대 세그먼트 사이즈인 200ms에서 KNN, SVC, RF, XGboost 4가지 모든 모델에서 96% 이상의 정확도를 도출하였다.

혼합형 신경회로망을 이용한 근전도 패턴 분류에 의한 가상 로봇팔 제어 방식 (The Virtual Robot Arm Control Method by EMG Pattern Recognition using the Hybrid Neural Network System)

  • 정경권;김주웅;엄기환
    • 한국정보통신학회논문지
    • /
    • 제10권10호
    • /
    • pp.1779-1785
    • /
    • 2006
  • 본 논문은 근전도 패턴 인식에 의한 가상 로봇팔 제어 방식을 제안한다. 고차원의 근전도 신호를 정밀하게 분류하기 위하여 혼합형 신경 회로망 방식을 사용한다. 혼합형 신경회로망은 SOFM과 LVQ로 구성되고, 고차원의 EMG 신호를 2차원 데이터로 변환한다. 3개의 표면 전극을 이용하여 EMG 신호를 측정 한다. 제안한 혼합 시스템을 이용하여 한글 자음 6개의 수화 신호를 분류한다. 가상 로봇팔 실험을 통해서 제안한 혼합 시스템을 이용한 수신호의 EMG 패턴 인식의 유용성을 확인하였다.

데이터 전처리를 통한 사용자 제스처 인식률 증가 방안 (A study on the increase of user gesture recognition rate using data preprocessing)

  • 김준헌;송병후;신동렬
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2017년도 제56차 하계학술대회논문집 25권2호
    • /
    • pp.13-16
    • /
    • 2017
  • 제스처 인식은 HCI(Human-Computer Interaction) 및 HRI(Human-Robot Interaction) 분야에서 활발히 연구되고 있는 기술이며, 제스처 데이터의 특징을 추출해내고 그에 따른 분류를 통하여 사용자의 제스처를 정확히 판별하는 것이 중요한 과제로 자리 잡았다. 본 논문에서는 EMG(Electromyography) 센서로 측정한 사용자의 손 제스처 데이터를 분석하는 방안에 대하여 서술한다. 수집된 데이터의 노이즈를 제거하고 데이터의 특징을 극대화시키기 위하여 연속적인 데이터로 변환하는 전처리 과정을 거쳐 이를 머신 러닝 알고리즘을 사용하여 분류하였다. 이 때, 기존의 raw 데이터와 전처리 과정을 거친 데이터의 성능을 decision-tree 알고리즘을 통하여 비교하였다.

  • PDF

근전도 기반의 Spider Chart와 딥러닝을 활용한 일상생활 잡기 손동작 분류 (Classification of Gripping Movement in Daily Life Using EMG-based Spider Chart and Deep Learning)

  • 이성문;피승훈;한승호;조용운;오도창
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권5호
    • /
    • pp.299-307
    • /
    • 2022
  • In this paper, we propose a pre-processing method that converts to Spider Chart image data for classification of gripping movement using EMG (electromyography) sensors and Convolution Neural Networks (CNN) deep learning. First, raw data for six hand gestures are extracted from five test subjects using an 8-channel armband and converted into Spider Chart data of octagonal shapes, which are divided into several sliding windows and are learned. In classifying six hand gestures, the classification performance is compared with the proposed pre-processing method and the existing methods. Deep learning was performed on the dataset by dividing 70% of the total into training, 15% as testing, and 15% as validation. For system performance evaluation, five cross-validations were applied by dividing 80% of the entire dataset by training and 20% by testing. The proposed method generates 97% and 94.54% in cross-validation and general tests, respectively, using the Spider Chart preprocessing, which was better results than the conventional methods.

CNN-LSTM 기반의 상지 재활운동 실시간 모니터링 시스템 (CNN-LSTM-based Upper Extremity Rehabilitation Exercise Real-time Monitoring System)

  • 김재정;김정현;이솔;서지윤;정도운
    • 융합신호처리학회논문지
    • /
    • 제24권3호
    • /
    • pp.134-139
    • /
    • 2023
  • 재활환자는 수술 치료 후 신속한 사회복귀를 목적으로 신체적 기능 회복을 위하여 통원치료 및 일상에서 재활운동을 수행한다. 병원에서 전문 치료사의 도움으로 운동을 수행하는 것과 달리 일상에서 환자 스스로 재활운동을 수행하는 것은 많은 어려움이 있다. 본 논문에서는 일상에서 환자 스스로 효율적이고 올바른 자세로 재활운동을 수행할 수 있도록 CNN-LSTM 기반의 상지 재활운동 실시간 모니터링 시스템을 제안한다. 제안한 시스템은 EMG, IMU가 탑재된 어깨 착용형 하드웨어를 통해 생체신호를 계측하고 학습을 위한 전처리 과정과 정규화를 진행하여 학습 데이터세트로 사용하였다. 구현된 모델은 특징 검출을 위한 3개 합성곱 레이어 3개의 폴링 레이어, 분류를 위한 2개의 LSTM 레이어로 구성되어 있으며 검증 데이터에 대한 학습 결과 97.44%를 확인할 수 있었다. 이후 Teachable machine과의 비교평가를 진행하였으며 비교평가 결과 구현된 모델은 93.6%, Teachable machine은 94.4%로 두 모델이 유사한 분류 성능을 나타내는 것을 확인하였다.