• Title/Summary/Keyword: EMC Performance

Search Result 86, Processing Time 0.026 seconds

Effect of Vinyl Ethylene Carbonate on Electrochemical Characteristics for Activated Carbon/Li4Ti5O12 Capacitors (활성탄/리튬티탄산화물 커패시터의 전기화학적 특성에 미치는 비닐에틸렌카보네이트의 영향)

  • Kwon, Yong-Kab;Choi, Ho-Suk;Lee, Joong-Kee
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.3
    • /
    • pp.190-197
    • /
    • 2012
  • We employed the vinyl ethylene carbonate (VEC) as an electrolyte additive and investigated the effect of the electrolyte additive on the electrochemical performance in hybrid capacitor. The activated carbon was adopted as cathode material, and the $Li_4Ti_5O_{12}$ oxide was used as anode material. The electrolyte was prepared with the $LiPF_6$ salt in the mixed solvent of ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate(EMC). We evaluated the electrochemical performance of the hybrid capacitor with increasing the amount of the VEC electrolyte additive, which is known as the remover of oxygen functional group and the stabilizer of the electrode by reducing the surface of electrode, and obtained the superior performance data especially at the addition of the VEC electrolyte additive of around 0.7 vol%. On the contrary, the addition of the VEC more than 0.7 vol% in the electrolyte leads to the degradation in electrochemical performance of hybrid capacitor, suggesting the increase of the side reaction from the excessive VEC additive. X-ray photoelectron spectroscopy (XPS) revealed that the addition of the VEC suppressed the formation of LiF component, which is known as the insulator, on the surface of electrode. The optimized addition of VEC exhibited the improved capacity retention around 82.7% whereas the bare capacitors without VEC additive showed the 43.2% of capacity retention after 2500 cycling test.

A Study on Ka band Qualification Model Multiplexers for Communication, Ocean and Meteorological Satellite (COMS) Payload (통신해양기상위성 Ka 대역 인증모델 밀티플렉서에 대한 연구)

  • Eom, Man-Seok;An, Gi-Beom;Yun, So-Hyeon;Gwak, Chang-Su;Yeom, In-Bok
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.63-70
    • /
    • 2006
  • This paper presents the results of Ka band qualification model multiplexers for COMS Payload to be launched in 2008. These are the input and output multiplexers of the satellite transponder to use available frequency resources effectively and the diplexer of the satellite antenna to use the same reflector for both transmitting and receiving frequency bands, respectively. The input multiplexer with four frequency channels has four(4) independent channel filters which consist of an 8-pole elliptic band-pass filter for high frequency selectivity and a 2-pole equalizer for group delay equalization. For low insertion loss, mass and volume reduction, manifold type os employed for output multiplexer. E-plane T-junction is used for either splitting or combining a frequency band into two sub-bands. Asymmetric inductive irises are used to tune the receiving filter easily. The electrical performance and environmental test such as vibration test, mechanical shock test, thermal vacuum test and EMC test are performed and the results of all qualification model multiplexers are compliant to the requirement of each multiplexer. Followed by this qualification, the flight model equipment will be developed.

  • PDF

Prediction of Noise in a Transmission Line Excited by an Electric Dipole (전기다이폴에 의해 유기되는 전송선로의 노이즈 예측)

  • Kim, Eunha;Lee, Jae-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.5
    • /
    • pp.391-399
    • /
    • 2017
  • At present the general trend of modern electronics is toward smaller packages and high performance. As an antenna requires high powers, the EMC(Electromagnetic Compatibility) problems of the transmission line stage is becoming crucial day by day. In this paper, a transmission line excited by the electromagnetic fields from an infinitesimal electric dipole antenna is analyzed using the modified telegrapher's equations. The analytical equations are derived for arbitrarily positioned electric dipole with reference to a transmission line. To verify our approach, the induced voltage and current at the terminal were computed by the proposed approach and compared with those obtained by the electromagnetic simulation solver. Furthermore, the induced currents at the terminal of a transmission line excited by the electric dipoles at various positions were investigated using our approach.

Electrochemical Characteristics of Porous Silicon/Carbon Composite Anode Using Spherical Nano Silica (구형 나노 실리카를 사용한 다공성 실리콘/탄소 음극소재의 전기화학적 특성)

  • Lee, Ho Yong;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.459-464
    • /
    • 2016
  • In this study, the electrochemical characteristics of porous silicon/carbon composite anode were investigated to improve the cycle stability and rate performance in lithium ion batteries. In this study, the effect of TEOS and $NH_3$ concentration, mixing speed and temperature on particle size of nano silica was investigated using $St{\ddot{o}}ber$ method. Nano porous Si/C composites were prepared by the fabrication processes including the synthesis of nano $SiO_2$, magnesiothermic reduction of nano $SiO_2$ to obtain nano porous Si by HCl etching, and carbonization of phenolic resin. Also the electrochemical performances of nano porous Si/C composites as the anode were performed by constant current charge/discharge test, cyclic voltammetry and impedance tests in the electrolyte of $LiPF_6$ dissolved inorganic solvents (EC:DMC:EMC=1:1:1vol%). It is found that the coin cell using nano porous Si/C composite has the capacity of 2,006 mAh/g and the capacity retention ratio was 55.4% after 40 cycle.

A Study on the Development and Application of Digital Protective Relay for DC Feeding System of Light Rail Transit System (경전철 직류급전계통을 위한 디지털 보호제어장치의 개발 및 적용에 관한 연구)

  • Baek, Byung-San;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.2
    • /
    • pp.77-86
    • /
    • 2005
  • The DC protection and control device for the feeding system of a Light Rail Transit(LRT) system is developed. For the development, the short circuit characteristics in the system are analyzed. As a result a protection algorithm for the DC fault selective relay (50F) is newly proposed, and principles of the DC fault selective relay, Line Test Device (LTD), DC Over Current Relay (DC OCR) are introduced From the development, the specifications and codes used to be unclear have become clarified and summarized. Moreover, the methods to examine the protective characteristics and Electromagnetic Compatibility (EMC) are established Finally, the performance and the effectiveness of the developed protective relay have been verified with the test based on IEC. For the reliability of the system, the relay has been installed and is being operated at the test track of the LRT system at Gyeong-San.

The Application of Fiber-Reinforced Composites to Electromagnetic Wave Shielding Enclosures (섬유강화 복합재료의 전자파 차폐 기구물에 대한 적용에 관한 연구)

  • Park Ki-Yeon;Lee Sang-Eui;Lee Won-Jun;Kim Chun-Gon;Han Jae-Hung
    • Composites Research
    • /
    • v.19 no.3
    • /
    • pp.1-6
    • /
    • 2006
  • As the structures of the high performance electronic equipments and devices recently become more complex, the electromagnetic interference (EMI) and compatibility (EMC) have been very essential for commercial and military purposes. Thus, sensitive electrical devices and densely packed systems need to be protected from electromagnetic wave. In this research, glass fabric/epoxy composites containing conductive multi-walled carbon nanotube (MWNT) and carbon fiber/epoxy composites as electrical shielding materials were fabricated and electrical properties of the composites were measured. The concerning frequency band is from 300 MHz to 1 GHz. The performances of composite shielding enclosures were predicted using electromagnetic wave 3-D simulation tool, CST Microwave Studio. The shielding enclosure made of carbon fiber/epoxy composites were fabricated and the shielding effectiveness (SE) was measured in the anechoic chamber.

Analysis of Performance Degradation of Antenna due to Radio Frequency Interference (RFI에 기인한 안테나 성능 저하 분석)

  • Lee, Hosang;Kim, Kwangho;Youn, Jinsung;Lee, Daehee;Hwang, Chanseok;Nah, Wansoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.651-658
    • /
    • 2017
  • This paper proposes an analysis method of performance degradation of antenna due to radio frequency interference between an antenna and adjacent noise sources using active scattering parameters. The radio frequency interference can be analyzed by the measured or simulated scattering parameters and by excited noise sources in the circuit as well. In this paper, a planar inverted-F antenna and a noise source are designed and fabricated to analyze radio frequency interference between the planar inverted-F antenna and noise source. The proposed analysis method uses active scattering parameters, of which verification is experimentally verified, and in simulation as well.

Performance of CSK Scheme for V2I Visible Light Communication

  • Kim, Hyeon-Cheol;Kim, Byung Wook;Jung, Sung-Yoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.3
    • /
    • pp.595-601
    • /
    • 2015
  • These days, research related to Intelligent Transportation System (ITS) technology is being widely considered. ITS is inevitable for future transportation systems to reduce accidents, congestion, and offer a smooth flow of traffic. The use of Visible Light Communication (VLC) in ITS systems has been considered widely because of its EMC/EMI free and LED infrastructure reusable properties. Among the VLC schemes, this study analyzed the performance of the Color Shift Keying (CSK) scheme under a Vehicle-to-Infrastructure (V2I) downlink scenario to verify the capability of CSK as a communication tool for ITS. By modeling daylight noise using the modified Blackbody radiation model, this study examined the performance of V2I VLC under daytime conditions. The relationship between BER, the communication distance, and the amount of ambient-light noises under the pre-described V2I scenario were determined by simulations.

Effects of Lithium Bis(Oxalate) Borate as an Electrolyte Additive on High-Temperature Performance of Li(Ni1/3Co1/3Mn1/3)O2/Graphite Cells (LiBOB 전해액 첨가제 도입에 따른 Li(Ni1/3Co1/3Mn1/3)O2/graphite 전지의 고온특성)

  • Jeong, Jiseon;Lee, Hyewon;Lee, Hoogil;Ryou, Myung-Hyun;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.2
    • /
    • pp.58-67
    • /
    • 2015
  • The effects of electrolyte additives, lithium bis(oxalate)borate (LiBOB), fluoroethylene carbonate (FEC), vinylene carbonate (VC), 2-(triphenylphosphoranylidene) succinic anhydride (TPSA), on high-temperature storage properties of $Li(Ni_{1/3}Co_{1/3}Mn_{1/3})O_2$/graphite are investigated with coin-type full cells. The 1 wt.% LiBOB-containing electrolyte showed the highest capacity retention after high temperature ($60^{\circ}C$) storage for 20 days, 86.7%, which is about 5% higher than the reference electrolyte, 1.15M lithium hexafluorophosphate ($LiPF_6$) in ethylene carbonate/ethyl methyl carbonate (EC/EMC, 3/7 by volume). This enhancement is closely related to the formation of semi-carbonate compounds originated from $BOB^-$ anions, thereby resulting in lower SEI thickness and interfacial resistance after storage. In addition, the 1 wt.% LiBOB-containing electrolyte also exhibited better cycle performance at 25 and $60^{\circ}C$ than the reference electrolyte, which indicates that LiBOB is an effective additive for high-temperature performance of $Li(Ni_{1/3}Co_{1/3}Mn_{1/3})O_2$/graphite chemistry.

Electrochemical Characteristics of Graphite/Silicon/Pitch Anode Composites for Lithium Ion Batteries using Silica-Coated Graphite (실리카로 코팅된 흑연을 이용한 리튬 이차전지용 흑연/실리콘/피치 복합소재의 전기화학적 특성)

  • Lee, Su Hyeon;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.142-149
    • /
    • 2020
  • In this study, the electrochemical performance of Graphite/Silicon/Pitch composites as anode material was investigated to improve the low theoretical capacity of artificial graphite. Spherical artificial graphite surface was coated with polyvinylpyrrolidone (PVP) amphiphiles material to synthesize Graphite/Silica material by silica islands growth. The Graphite/Silicon/Pitch composites were prepared by petroleum pitch coating and magnesiothermic reduction. The Graphite/Silicon/Pitch composite electrodes manufactured using poly(vinylidene fluoride) (PVDF), carboxymethyl cellulose (CMC) and polyacrylic acid (PAA) binders. The coin type half cell was assembled using various electrolytes and additives. The Graphite/Silicon/Pitch composites were analysed by X-ray diffraction (XRD), scanning electron microscope (SEM) and a thermogravimetric analyzer (TGA). The electrochemical characteristics of Graphite/Silicon/Pitch composite were investigated by constant current charge/discharge, rate performance, cyclic voltammetry and electrochemical impedance spectroscopy. The Graphite/Silicon/Pitch composites showed high cycle stability at a graphite/silica/pitch ratio (1:4:8 wt%). When the electrode is prepared using PAA binder, the high capacity and stability is obtained. The coin type half cell assembled using EC: DMC: EMC electrolyte showed high initial capacity (719 mAh/g) and excellent cycle stability. The rate performance has an capacity retention (77%) at 2 C/0.1 C and an capacity recovery (88%) at 0.1 C / 0.1 C when the vinylene carbonate (VC) was added.