Kim, Mi-Jung;Lee, Jae-Eun;Kim, Jung-Tae;Jung, Gun-Ho;Lee, Jin-Seok;Kim, Sun-Lim;Youn, Kyoung-Jin;Kim, Wook-Han;Chung, Ill-Min
KOREAN JOURNAL OF CROP SCIENCE
/
v.60
no.3
/
pp.308-317
/
2015
The aim of the present study was to investigate the ear and kernel characteristics of colored waxy corn hybrids during ripening according to different sowing dates. Heukjinjuchal and Eolrukchal 1 were sown at April 20 (first cropping) and July 20 (second cropping) in 2011~2012. The accumulated temperature from silking to harvesting was about $590{\sim}610^{\circ}C$. It takes 23~24 days when Heukjinjuchal and Eolrukchal 1 were sown in April 20, but July 20 sowing takes 32~35 days. Ear weight, ear diameter, 100-kernel weight and starch content of colored waxy corn were increased as ears matured (p<0.05). Growth temperature was getting decreased during the ripening stage of second cropping, the rate of ear and kernel development had slowed. Starch granules started to accumulate in the cells around the pericarp, then developed in the cells around the embryo. In the second cropping, starch granules in the kernel of colored waxy corn were less compact than the first cropping. The contents of total anthocyanins, cyanidin-3-glucoside and pelargonidin-3-glucoside were increased according to ripening (p<0.05). These results will be helpful to farmers for double cropping of colored waxy corn cultivation and management.
Kang M. Y.;Han M. S.;Lee S. C.;Kim J. H.;Sohn S. H.
Reproductive and Developmental Biology
/
v.29
no.1
/
pp.1-7
/
2005
Telomeres consisting of (TTAGGG)n tandem repeat DNA sequences and associated proteins are essential for chromosome stability and related with cell senescence, apoptosis and cancer. The telomerase is a ribonucleoprotein which act as a template for the synthesis of telomeric DNA. This study was carried out to identify the distribution of telomeres on mouse chromosomes and also to analyze the amount of telomeres and telomerase activity of mouse embryos at early embryonic stages. Germ cells and early embryos from 1 cell to blastocyst stage were analyzed. The amount of telomeres was analyzed by quantitative fluorescence in situ hybridization technique(Q-FISH) using a human telomeric DNA probe, and telomerase activity was measured by telomeric repeat amplification protocol assay(TRAP). In results, the telomeres on mouse chromosomes were distributed at the ends of all autosomes and sex chromosomes. Although the quantity of telomeres varied among chromosomes, most of chromosomes had higher amount in q-arm telomeres than in p-arm telomeres. The results of Q-FISH indicated that the relative amount of telomeres of mouse embryos in each embryonic stage was approximately the same except the higher amount in blastocysts. Using TRAP assay on mouse embryos, telomerase activity was detected in all preimplantation stages from mature oocytes to blastocysts. Especially the telomerase activity was significantly increased at the morula and blastocyst stage. In conclusion, there may be a close association between the amount of telomeres and telomerase activity in early embryonic stages, and analysis of telomere quantity and telomerase activity on early development will be helpful for the investigation of embryogenesis and embryonic cell differentiation in mice.
This study was designed to examine the ability of the bovine (MII) oocytes cytoplasm to support several mitotic cell cycles under the direction of differentiated somatic cell nuclei of bovine, porcine, mouse and human. Bovine GV oocytes were matured in TCM-199 supplemented with 10% FBS. At 20h after IVM, recipient oocytes were stained with 5 $\mu\textrm{g}$/$m\ell$ Hoechst and their 1st polar body (PB) and MII plate were removed by enucleation micropipette under UV filter. Ear skin samples were obtained by biopsy from an adult bovine, porcine, mouse and human and cultured in 10% FBS added DMEM. Individual fibroblast was anlaysed chromosome number to confirm the specificity of species. Nuclear transferred (NT) units were produced by electrofusion of enucleated bovine oocytes with individual fibroblast. The reconstructed embryos were activated in 5 $\mu$M ionomycin for 5 min followed by 1.9 mM 6-dimethylaminopurine (DMAP) in CR1aa for 3 h. And cleaved NT embryos were cultured in CR1aa medium containing 10% FBS on monolayer of bovine cumulus cell for 8 days. Also NT embryo of 4~8 cell stage was analysed chromosome number to confirm the origin of nuclear transferred somatic cell. The rates of fusion between bovine recipient oocytes and bovine, porcine, mouse and human somatic cells were 70.2%, 70.2%, 72.4% and 63.0%, respectively. Also, their cleavage rates were 60.6%, 63.7%, 54.1% and 62.7%, respectively, there were no differences among them. in vitro development rates into morula and blastocyst were 17.5% and 4.3% in NT embryos from bovine and human fibroblasts, respectively. But NT embryos from porcine and mouse fibroblasts were blocked at 16~32-cell stage. The chromosome number in NT embryos from individual fibroblast was the same as chromosome number of individual species. These results show that bovine MII oocytes cytoplasm has the ability to support several mitotic cell cycles directed by newly introduced nuclear DNA.
The effects of prostaglandins in hatching and implantation have been studied but the results were various, and those are not well known by the embryonic stage. The present study examined the effects of prostaglandin $E_2$(PG $E_2$) and prostaglandin $F_2$$_{\alpha}$ (PG $F_2$$_{\alpha}$) on the expansion and hatching of mouse embryos by embryonic stage. Also we tried to measure the concentration of prostaglandins of morula, expanded, and hatching embryos. In early morula stage embryos, high concentration of PG $E_2$(>100$\mu$M) showed cytotoxicity but PG $F_2$$_{\alpha}$ did not. The hatching was inhibited all groups but not gave negative effects on expansion. In 84 hr and 96 hr stage embryos, the hatching rate was decreased at all treatment groups but not inhibited the expansion. When combine prostaglandin with indomethacin, the hatching rate was increased significantly compared to the prostaglandin-treated groups, and as lower and lower the PG $E_2$ concentration, the hatching rate increased to the control level. The embryonic synthesis of PG $E_2$ increased dramatically but that of PG $F_2$$_{\alpha}$ increased gradually. PG $E_2$ showed cytotoxicity at early stage embryos much than late stage embryos, but PG $F_2$$_{\alpha}$ did not. Hatching was inhibited by the high PG $F_2$$_{\alpha}$ concentration. It is suggested that the inhibition of hatching might be at resulted from cytotoxicity of PG $E_2$ on embryo. However, it is thought that the mechanisms of inhibition of hatching are different between PG $E_2$ and PG $F_2$$_{\alpha}$. In conclusion, it can be suggested that PG $E_2$ and PG $F_2$$_{\alpha}$ concerned with the expansion and hatching, and their effects on hatching were different by the embryonic stage.$/ concerned with the expansion and hatching, and their effects on hatching were different by the embryonic stage.
This study was carried out to investigate the effect of leukemia inhibitory factor (LIF) on the derivation of mouse ES cells from isolated blastomeres. Two-cell stage mouse embryos were obtained from superovulated BDF1 female mice. Collected embryos were cultured to blastocyst stage in culture medium supplemented with 0, 1,000, 2,500 or 5,000 U/mL of LIF. Cultured blastocysts were examined by counting the number of cells in the inner cell mass (ICM) and trophectoderm (TE) using differential staining method. When 2-cell embryos were cultured with 2,500 U/ml of LIF, the cell numbers of ICM significantly increased in comparing with those of the control($21.0{\pm}4.0$ vs. $15.9{\pm}5.0$, P<0.01) and 1,000 U/mL of LIF-containing group ($21.0{\pm}4.0$ vs. $16.6{\pm}4.9$, P<0.05). We used an ES cell establishment medium with 20% Knockout Serum Replacement and 0.01 mg/mL ACTH instead of fetal bovine serum. Establishing efficacy of ES cell lines were the highest in 2,500 U/mL of LIF-containing group as 36.7% (11/30). This culture medium was applied to the culture of isolated blastomeres and to derivate ES cell lines. Three ES cell lines (21.4%) from isolated blastomeres of 2-cell stage embryos were established. In further experiments, we could establish one ES cell line (4.0%) from single blastomere of 4-cell stage embryo. The subcultured ES cells and their embryoid bodies were characterized by analyzing gene expression for undifferentiation and differentiation marker gene using immunocytochemistry and RT-PCR. In conclusion, LIF supplementation in culture medium could increase the cell number in ICM of blastocysts and support derivation of ES cell lines from isolated blastomeres.
Choi, Su Jin;Lee, Sun Hee;Song, In Ok;Koong, Mi Kyoung;Kang, Inn Soo;Jun, Jin Hyun
Clinical and Experimental Reproductive Medicine
/
v.33
no.4
/
pp.237-243
/
2006
Objective: The aim of this study was to evaluate the efficacy of frozen-thawed ET in poor prognosis patients such as the old age (38~44 years; OA group) and the patients who did not achieve clinical pregnancy with the first fresh ET cycle (non-pregnant patients; NP group). Methods: Laboratory and clinical data were collected from fresh and frozen-thawed ET cycles of OA and NP group. Controlled ovarian hyperstimulation (COH) and conventional insemination or ICSI, in vitro culture and ET were performed by routine procedures. Supernumerary embryos were frozen by the slow freezing method, and frozen embryos were thawed by the rapid thawing method. Embryo development, pregnancy and implantation rates were statistically analyzed by Student t-test and chi square test Results: Mean ages were similar between fresh ET ($40.0{\pm}1.8$ years, n=206) and frozen-thawed ET ($39.9{\pm}1.9$ years, n=69) cycles in OA group. However, the clinical pregnancy and implantation rate of subsequent frozen-thawed ET significantly higher than those of fresh ET cycles (29.0% and 11.2% vs. 16.5% and 7.0%, p<0.05). In NP group, there was no difference in the mean age between fresh ET ($31.2{\pm}2.3$ years, n=40) and frozen-thawed ET ($31.9{\pm}3.1$ years, n=119) in subsequent cycles. The clinical pregnancy and implantation rates were similar between the subsequent fresh ET (42.5% and 22.6%) and the frozen-thawed ET (40.3% and 18.8%). Conclusion: In old age patients, higher pregnancy rate of frozen-thawed ET compared to fresh ET cycles in this study. It may be related that better uterine environments for implantation in frozen-thawed ET cycles than that of non-physiological hormonal condition in uterus of fresh COH cycles.
Kim, Jong-Su;Choi, Young-Ung;Rho, Sum;Yoon, Young-Seock;Jung, Min-Min;Song, Young-Bo;Lee, Chi-Hoon;Lee, Young-Don
Journal of Aquaculture
/
v.20
no.2
/
pp.96-105
/
2007
A pair of maroon clownfishes with an indonesian native, reared in recirculation culture system to develope its aquaculture techniques. Courtship, spawning behavior, egg developments and rearing of the maroon clownfish larvae were documented. The larval development were described with illustrative figures. The spawning was occurred 8 times between Feburary and August 2004. The gravid female spawned during 15:00-20:00. The male mainly took care of the eggs supplying oxygen by water currents using their pectoral fins, anal fin and mouth. The fertilized eggs were separative-adhesive and oval in shape, and $1.99{\pm}0.03\;mm$ in longer diameter and $0.88{\pm}0.03\;mm$ in shorter diameter. The fertilized eggs were in deep-orange color. Cleavage occurred in 30 minutes after fertilization, and the egg reached 2 cells stage in 1 hour 10 minutes after fertilization at $27.0^{\circ}{\pm}0.5^{\circ}C$. The embryo was formed in 23 hours 40 minutes after fertilization. Hatching began in between $120{\pm}2$ hours and $150{\pm}12$ hours after fertilization at $27.0^{\circ}C$ in the incubator. Total length (TL) of the newly hatched larvae was 3.22 mm with mouth and anus opened. Ten days after hatching, mean TL of the larvae were 6.21 mm with 28 dorsal fin rays, 17 anal fin rays and 28 caudal fin rays. Nineteen days after hatching, mean TL of the larvae were 9.34 mm. At this stage the larva had three white bands on the body, and they began to feed on commercial diet.
To develop rice (Oryza sativa L.) cultivars to be planted on salt-affected sites, cell lines with enhanced proline content and resistance to growth inhibition by Azetidine-2-carboxylic acid (AZCA), a proline analogue, were screened out among calli irradiated with gamma ray of 50, 70, 90, and 120 Gy. The calli had been derived from embryo culture of the cultivar Donganbyeo. Selected AZCA resistant lines that had high proline accumulation were used as sources for selection of NaCl resistant lines. To determine an optimum concentration for selection of NaCl resistant lines, Donganbyeo seeds were initially cultured on the media containing various NaCl concentrations (0 to 2.5%) for 40 days, and 1.5% NaCl concentration was determined as the optimum concentration. One hundred sixteen salt-tolerant (ST) lines were selected from bulked 20,000 seeds of the AZCA resistant $M_{3}$ seeds in the medium containing 1.5% NaCl. The putative 33 lines ($M_{4}$ generation) considered with salt-tolerance were further analyzed for salt tolerance, amino acid and ion contents, and expression patterns of the salt tolerance-related genes. Out of the 33 lines, 7 lines were confirmed to have superior salt tolerance. Based on growth comparison of the entries, the selected mutant lines exhibited greater shoot length with average 1.5 times, root length with 1.3 times, root numbers with 1.1 times, and fresh weight with 1.5 times than control. Proline contents were increased maximum 20%, 100% and 20% in the leaf, seed and callus, respectively, of the selected lines. Compared to control, amino acid contents of the mutants were 24 to 29%, 49 to 143%, 32 to 60% higher in the leaf, seed and callus, respectively. The ratio of $Na^{+}/K^{+}$ for most of the ST-lines were lower than that of control, ranging from 1.0 to 3.8 for the leaf and 11.5 to 28.5 for the root, while the control had 3.5 and 32.9 in the leaf and root, respectively. The transcription patterns for the P5CS and NHXI genes observed by RT-PCR analysis indicated that these genes were actively expressed under salt stress. The selected mutants will be useful for the development of rice cultivar resistant to salt stress.
A novel sterategy has been established to determine the origin of the Primordial Germ Cells (PGCs) in avian embryos directly and the developmental fate of the PGCs for the application to Poultry biotechnology. Cells were removed from 1) the centre of area pellucida, 2) the outer of area pellucida and 3) the area opaca of the stage X blastoderm (Eyal-Giladi & Kochav, 1976). When the cells were removed from the centre of area pellucida, the mean number of circulating PGCs in blood was significantly decreased in the embryo at stage 15 (Hamburger & Hamilton, 1951) as compared to intact embryos. When the cells were replenished with donor cells, no reduction in the PGCs number was observed. The removal of cells at the outer of area pellucida or at the area opaca had no effect on the number of PGCs. In case, another set of the manipulated embryos were cultured ex vivo to the hatching and reared to the sexual maturity, the absence of germ cells and degeneration of seminiferous tubules was observed in resulting chickens derived from the blastoderm in which the cells were removed from the centre of the area pellucida. It was concluded that the avian Primordial Germ cells are originated at the center of area pellucida. Developmental ability of the cells to differentiate into somatic cells and germ cells in chimeras were analyzed. Somatic chimerism was detected as black feather attributed from donor cells. Molecular identification by use of female - specific DNA was performed. It was confirmed that the donor cells could be differentiated into chimeric body and erythrocytes. Donor cells retained the ability to differentiate into germline in chimeric gonads. More than 70% of the generated chimeras transmitted donor derived gametes to their offspring indicating that the cells at the center of area pellucida had the high ability to differentiate into germ cells. A molecular technique to identify germline chimerism has been developed by use of gene scan analysis. Strain specific DNA fragments were amplified by the method. It would be greatly contributed for the detection of germline chimerism. Mixed- sex chimeras which contained both male and female cells were produced to investigate the developmental fate of male and female cells in ovary and testes. The sex combinations of donor and recipient of the resulting chimeras were following 4 pairs; (1) chimeras (ZZ/ZZ) produced by a male donor (ZZ) and a male recipient (ZZ), (2) chimeras (ZW/ZW) produced by a female donor (ZW) and a female recipient (ZW), (3) chimeras (ZZ/ZW) Produce by a male donor (ZZ) and a female recipient (ZW), (4) chimeras (ZW/ZZ) produced by a female donor (ZW) and a male recipient (ZZ). It was found that genetically male avian germ cells could differentiate into functional ova and that genetically female germ cells can differentiate into functional spermatozoa in the gonad of the mixed- sex chimeras. An ability for introduction of exogenous DNA into the PGCs from stage X blastoderms were analyzed. Two reporter genes, SV-$\beta$gal and RSV-GFP, were introduced into the PGCs. Expression of bacterial/gal was improved by complexing DNA with liposome detectedcc in 75% of embryos at 3 days embryos. At the embryos incubated for 1 day, expression of the GFP was observed all the embryos. At day 3 of incubation, GFP was detected in about 70% of the manipulated embryos. In case of GFP, expression of the transgene was detected in 30 %e of the manipulated embryos. These results suggested that the cells is one of the most promising vectors for transgenesis. The established strategy should be very powerfull for application to poultry biotechnology.
Purpose of the present study was to find the optimal ovulation induction medicine for the maturation and development of immature oocytes and culture media for 2-cell embryos in the mouse model. ICR female mouse aged 6 to 8 weeks, were stimulated with 5 IU PMSG injection. At 47 to 50 hour post-PMSG injection, ovaries were dissected out and oocytes-cumulus complexes were punctured. The oocyte-cumulus complexes were cultured in media containing various ovulation induction medicine, CC, HMG and Metrodin for 18 hours. Female ICR mice were stimulated with 5 IU PMSG and 48 hours later were injected 5 IU of hCG, then female and male mice were mated. At 48 hour post-hCG injection, oviducts were dissected out and 2-cell embryos were flushed. The 2-cell embryos were cultured in various media, Ham's F-10 media of milli-Q water $(3^{\circ})$, Ham's F-10 media of HPLC (high performance liquid chromatography, Baxter) water, Medicult media, HTF (human tubal fluid) media for 96 hours. The results were as follows. 1. When the oocytes-cumulus complexes were cultured in $10^{-9}{\mu}g/ml{\sim}10^{-8}{\mu}g/ml$ of CC, those were suppressed in meiotic maturation $(28.2{\sim}33.7%)$. Whereas the oocytes-cumulus complexes were cultured in $10^{-7}{\mu}g/ml{\sim}10^{-4}{\mu}g/ml$, these were not effected in meiotic maturation $(54.5{\sim}72.7%)$. 2. When the oocytes-cumulus complexes were cultured in $10^{-4}{\mu}g/ml{\sim}10^{-1}{\mu}g/ml$ of Metrodin, those were suppressed in meiotic maturation $(35.7{\sim}41.5%)$. Meanwhile the oocytes-cumulus complexes were cultured in $10^{-7}{\mu}g/ml{\sim}10^{-5}{\mu}g/ml$, those were not effected in meiotic maturation $(54.2{\sim}70.3%)$. 3. When the oocytes-cumulus complexes were cultured in $10^{-5}{\mu}g/ml{\sim}10^{-4}{\mu}g/ml$ of HMG, those were suppressed in meiotic maturation $(48.2{\sim}50.4%)$. As being cultured in $10^{-7}{\mu}g/ml{\sim}10^{-6}{\mu}g/ml$, increased in meiotic maturation $(75.8{\sim}80.7%)$. 4. When the 2-cell embryos were cultured in Ham's F-10 media of milli-Q water $(3^{\circ})$, Ham's F-10 media of HPLC (high performance liquid chromatograpy, Baxter) water, Medicult media, HTF (human tubal fluid) media, developmental rates to blastocyst and hatching for 96 hour were 50.0%, 45.2%, 71.5% and 95.6%, respectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.