• 제목/요약/키워드: EM wave

Search Result 237, Processing Time 0.03 seconds

Fabrication and Evaluation of the Super Thin-Type EM Wave Absorber for Suppressing EM Noises in 2.4 GHz Band (2.4 GHz 대역용 불요전자파 억제용 초박형 전파흡수체의 제작 및 평가)

  • Kim, Dong Il;Kwak, Hyun Soo;Joo, Yang Ick;Park, Soo Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.3
    • /
    • pp.500-506
    • /
    • 2015
  • In this paper, we designed and fabricated the EM wave absorber consisted of Sendust for suppressing EM wave noise PCB in ISM (Industrial, Scientific and Medical) band of 2.4 GHz. We fabricated several samples with different composition ratios of some kinds of Sendust to CPE (Chlorinated Ploy-ethylene) as a binder, and it was confirmed that the optimum composition ratio of absorbing materials was Flaked Sendust : CPE = 72.5 : 27.5 wt.%.. The absorbing abilities were simulated by changing the thickness and the measured material constants of EM wave absorber. The measured absorption abilities were analyzed and compared with the simulated ones. As a result, the simulated results agree well with the measured ones, and the developed EM wave absorber with extremely thin thickness of 0.6 mm has absorption ability of 5.4 dB at 2.4 GHz is excellent one. The thin type EM wave absorber can be applied for suppressing and absorbing electromagnetic noises from information and communication equipments.

Synthesis and electromagnetic properties of FeNi alloy nanofibers using an electrospinning method

  • Lee, Young-In;Choa, Yong-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.5
    • /
    • pp.218-222
    • /
    • 2012
  • FeNi alloy nanofibers have been prepared by an electrospinning process followed by air-calcination and H2 reduction to develop electromagnetic (EM) wave absorbers in the giga-hertz (GHz) frequency range. The thermal behavior and phase and morphology evolution in the synthetic processes were systematically investigated. Through the heat treatments of calcination and H2 reduction, as-spun PVP/FeNi precursor nanofiber has been stepwise transformed into nickel iron oxide and FeNi phases but the fibrous shape was maintained perfectly. The FeNi alloy nanofiber had the high aspect ratio and the average diameter of approximately 190 nm and primarily composed of FeNi nanocrystals with an average diameter of ~60 nm. The FeNi alloy nanofibers could be used for excellent EM wave absorbing materials in the GHz frequency range because the power loss of the FeNi nanofibers increased up to 20 GHz without a degradation and exhibited the superior EM wave absorption properties compared to commercial FeNi nanoparticles.

Electromagnetic Wave Absorbers Prepared with Alnico Magnets

  • Song Jae-Man;Kim Dong-Il;Choi Jeung-Hyun;Jeung Jae-Hyun
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.3
    • /
    • pp.117-121
    • /
    • 2005
  • We compared electromagnetic(EM) wave absorption properties between Alnico magnet (A) and (B) with different magnetic properties. Also, we investigated the effect of carbon, thickness of absorbers, and Alnico contents on EM wave absorption, and clarified the relation between Alnico content and central frequency.

A Study on EM Wave Absorber for Electromagnetic Wave Environment of Wireless LAN at 5.2 GHz (5.2 GHz 무선 LAN의 전자파 환경 대책용 전파흡수체에 관한 연구)

  • Yoo, Gun-Suk;Choi, Dong-Soo;Kim, Dong-Il
    • Journal of Navigation and Port Research
    • /
    • v.34 no.1
    • /
    • pp.15-19
    • /
    • 2010
  • Recently, the wireless LAN system is rapidly growing because of its convenience of high speed communication. However, the wireless LAN systems at indoor places occur multi-propagation path by reflected waves from walls, ceilings, floors, and desks. Multipath problems cause transmission errors and degradation of communication speed. These problems can be solved by using EM wave absorbers. In this paper, we analyzed property of Graphite and derived the optimum ratio of Graphite: CPE to develop EM wave absorber for the wireless LAN system. First, we fabricated several samples in different composition ratios of Graphite and CPE, and then measured the reflection coefficient of each samples. Material constants of permittivity and permeability were calculated using the measured data and designed EM wave absorber. Secondly, the EM wave absorber was fabricated and tested on the base of the simulation data. As a result, it showed that the EM wave absorber in 1.7 mm thickness with the ratio of Graphite: CPE=50:50 wt.% has excellent absorption ability more than 27 dB at 5.2 GHz.

Development and prospect of Smart EMW Absorber for Protection of Electronic Circuits and Devices with Heat Radiating Function (전자회로 및 부품 보호용 방열기능형 스마트 전파 흡수체의 개발과 전망)

  • Kim, Dong Il;Park, Soo Hoon;Joo, Yang Ick
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1040-1046
    • /
    • 2015
  • With the rapid progress of electronics and radio communication technology, human enjoys greater freedom in information communication. However, EMW (Electro-Magnetic Wave) environments have become more complicate and difficult to control. Thus, international organizations, such as the American National Standard Institution (ANSI), Federal Communications Commission (FCC), the Comite Internationale Special des Perturbations Radio Electrique (CISPR), etc, have provided standard for controlling the EM wave environments and for the countermeasure of the electromagnetic compatibility (EMC). In this paper, the status of EMW absorbers and the goal of smart EMW absorber in the future were described. Furthermore, design method of the smart EM wave absorber with heat radiating function was suggested. The designed smart EM wave absorber has the absorption ability of more than 20 dB from 2 GHz to 2.45 GHz band, the optimum aperture (hole) size, the adjacent hole space, and the thickness of which were 6 mm, 9 mm, and 6.5 mm, respectively. Thus, it is respected that these results can be applied as various EMC devices in electronic, communication, and controlling systems.

Analysis of Properties of Flake Sendust EM Wave Absorber according to Granularity (입도에 따른 Flake Sendust 전파 흡수체의 특성 분석)

  • Park, Soo-Hoon;Kim, Dong-Il;Choi, Dong-Han;Kim, Seong-Yeon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.9
    • /
    • pp.1051-1057
    • /
    • 2008
  • In this paper, we analyzed the characteristics of the EM wave absorber which was fabricated by using flake sendust (soft metal magnetic powder). The flake sendust was made of 3 different granularity by attrition mill. First, we have fabricated 3 kind of EM wave absorbers using the flake sendust and CPE(Chlorinated Polyethylene) and measured the S-parameters of the EM wave absorber. The complex relative permittivity and permeability were calculated from the measured data and the variations according to a change of granularity were researched. As a result, it was confirmed that the EM wave absorber using flake sendust with the $140{\mu}m$ average granularity has outstanding absorption ability in high frequency range(C band) for the reduction of eddy current loss(increase of permeability) and the increase of space charge polarization(increase of permittivity).

A Study on Design and Fabrication of mmwave EM Absorber (밀리미터파 대역 전파흡수체의 설계 및 제작에 관한 연구)

  • Kim, Dae-Hun;Choi, Chang-Mook;Choi, Dong-Soo;Han, Hang-Man
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.10a
    • /
    • pp.54-55
    • /
    • 2009
  • The bandwidth of detecting radars used for military purpose is increasingly broadened, and recently, the frequency band of the detecting radars is expanding to millimeterwave bands c! the millimeterwave bands of 35 GHz and 94 GHz. Since, especially, it is essential and important to fabricate and develop EM wave absorber with the absorption ability more than 10 dB in 94 GHz band, the EM wave absorber was manufactured based on the design method by FDTD simulation As a result, the developed EM wave absorber with the composition ratio of Binder(CPE with additional materials) : Carbon = 70 : 30 wt.% has the thickness of 0.7 mm and the absorption ability more than 14 dB in the frequency range of 94 GHz.

  • PDF

Development of the EM wave Absorber for Improving the Performance of Hi-Pass System in ITS (ITS에 있어서 Hi-Pass 시스템의 성능 개선을 위한 전파흡수체의 개발)

  • Kim, Dong Il;Kim, Jeong Chang;Joo, Yang Ick
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1505-1510
    • /
    • 2014
  • High-Pass (ETC ; Electronic Toll Collection) system is one of the basic elements, which adopts a wireless communication method using 5.8 GHz and can realize a part of ITS (Intelligent Traffic System). On the other hand, communication errors occur frequently in Hi-Pass system due to signal erros, multi-path reflection, and/or system-to-system interferences. To solve these problems, an EM (Electro-Magnetic) wave absorber can be used. To solve these Problems, we fabricated some samples in the different composition ratios of Carbon, Sendust, and CPE, and it was confirmed that the optimum composition ratio of Carbon : Sendust : CPE is 10 : 40 : 50 wt.%. The complex relative permittivity and complex relative permeability were derived by using the measured data. In addition, the optimum design parameters for the absorber were determined by simulation. Then the absorption abilities were calculated by changing the thickness of the EM wave absorbers. As a result, the optimum thickness of the developed EM wave absorber was 2.85 mm with absorption ability over 22.4 dB at 5.8 GHz. Futhermore, the EM wave absorber was fabricated based on the simulated and designed values. The measured values agreed well with the simulated ones. Therefore, it was clearly shown that the developed EM wave absorber in this paper is to be applied in actual situations.

Development of EM Wave Absorber for Millimeter Wave Radar (밀리미터 레이더용 전파흡수체 개발)

  • Choi Chang-Mook;Kim Dong-Il;Je Seung-Hun;Choi Yun-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.223-227
    • /
    • 2006
  • The millimeter-wave radar is positioned as a key, basic ITS technology supporting safe driving, because millimeter wave allows radar to see small distant objects. This system is considered the collision-avoidance radar available in some cars. This system employs poised radar operating within the frequency range $76\sim77GHz$. Radar systems create two major problems(false images and system-to-system interference). False echoes cause driving hazards. These problems can be eliminated through the use of EM wave absorber. Therefore, we designed and fabricated EM wave absorber using permalloy. It has the thickness of 1.4 mm with composition of permalloy:CPE=70:30 wt% and absorption ability higher than 18 dB in the frequency range $76\sim77GHz$.

  • PDF

A Study on Analysis of EM Wave Absorber with Broadband Characteristics for Anechoic Chamber (전파무향실용 광대역 전파흡수체의 정밀해석에 관한 연구)

  • Kim, Dae-Hun;Kim, Dong-Il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.551-554
    • /
    • 2005
  • In this Paper, a super wide-band EM wave absorber was designed by attaching pyramidal type absorber on a ferrite absorber. The used ferrite absorber was in hemisphere type on a cutting cone-shaped absorber. As a result, the bandwidth has been broadened from 30 MHz to 18 GHz and the total height of the EM Wave absorber is relatively low profile of 14.26 cm.

  • PDF