• Title/Summary/Keyword: ELVs

Search Result 15, Processing Time 0.019 seconds

Present Condition of End-of-Life Vehicles & SLF/ASR Recycling in Europe (EU의 ELVs & SLF/ASR 재활용 현황)

  • Baek, Sang-Ho;Jeon, Ho-Seok;Lee, Eun-Seon;Choi, Hee-Kyung;Kim, Jae-Geung
    • Resources Recycling
    • /
    • v.23 no.4
    • /
    • pp.58-68
    • /
    • 2014
  • The statistics showed that about 1 billion automobiles were registered and about 40million ELVs occurred on the world in 2010. So all advanced countries including EU had plan to increase the ELVs recycling rate up to 95% of total by 2015. The Korean government also established a target for raising up to 95% of ELVs recycling rate according to 'Act on the Resource Circulation of Electrical and Electronic Equipment and Vehicles'. Before being satisfied with the requirement of recycling of ELVs however, the problem is issued on the scraps of plastic and non-ferrous metals which are now being abandoned and reclaimed with no adequate reuse. Therefore, as a part of preceding investigation on the present state of ELVs recycling in the world, this preliminary investigation study was carried out focusing on the state of EU's disposal and management regulations of ELVs and SLF/ASR including the world trend of disposal and management regulations of ELVs and SLF/ASR.

A Study on the Forecasting of the Number of End of Life Vehicles in Korea using Markov Chain (Markov Chain을 이용한 국내 폐차발생량 예측)

  • Lee, Eun-A;Choi, Hoe-Ryeon;Lee, Hong-Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.3
    • /
    • pp.208-219
    • /
    • 2012
  • As the number of end-of-life vehicles (ELVs) has kept increasing, the management of ELV has also become one of the academic research focuses and European Union recently adopted the directive on ELVs. For the stakeholders has become a principle agent of dealing with all about ELVs, it is relevant investment decision to set up and to decide high-cost ELVs entity locations and to forecast future ELVs' amount in advance. In this paper, transition probability matrixes between months are made by using Markov Chain and the number of ELVs is predicted with them. This study will perform a great role as a fundamental material in Korea where just started having interests about recycling resources and studies related to the topic. Moreover, the forecasting method developed for this research can be adopted for other enhancements in different but comparable situations.

A Study on the Economic Evaluation of the Recycling of End-of-Life Vehicles (폐(廢) 자동차(自動車) 재활용(再活用) 과정의 경제성(經濟性) 평가(評價)에 관한 연구(硏究))

  • Baek, Mi-Hwa;Ahn, Hye-Seong;Kim, Dong-Su
    • Resources Recycling
    • /
    • v.18 no.2
    • /
    • pp.62-68
    • /
    • 2009
  • Number of vehicles in Korea is gradually increasing and it exceeded 16 million in 2007. Holding of vehicles is connected to disposal, owing to this reason the importance of ELVs recycling has been emphasized. The recycling of ELVs makes the disposal of ELVs easier as well as protects environment and it has the alternative effect economizing the insufficient resource. This study was carried out to evaluate the economic effect of recycling of ELVs compared with disposal of ELVs. The analysis showed that recycling process makes a profit in comparison to the disposal of ELVs. Therefore the government has to consider establishing the regulation related to recycling of ELVs or materials and car manufactures have to develop the efficient dismantling and recycling methods.

Mercury Emission Control in Japan

  • Takiguchi, Hiroaki;Tamura, Tomonori
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.1
    • /
    • pp.37-46
    • /
    • 2018
  • The Minamata Convention on Mercury entered into force on August 16, 2017. It requires Parties to the Convention to control and, where feasible, reduce mercury emissions from the listed sources. To implement the Convention, Japan amended the Air Pollution Control Law and added clauses that force operators to control their mercury emissions below emission limit values (ELVs). The ELVs have been established separately for new and existing sources, targeting the source categories listed in the Convention: coal-fired boilers, smelting and roasting processes used in the production of non-ferrous metals (lead, zinc, copper and industrial gold), waste incineration facilities and cement clinker production facilities. The factors used to establish the ELVs include the present state of mercury emissions from the targeted categories as well as the mercury content in fuels and materials, best available techniques (BATs) and best environmental practices (BEPs) to control and reduce mercury emissions and ELVs or equivalent standards to control mercury emissions in other countries. In this regard, extensive data on mercury emissions from flue gas and the mercury content of fuels and materials were collected and analyzed. The established ELVs range from $8{\mu}g/Nm^3$ for new coal-fired boilers to $400{\mu}g/Nm^3$ for existing secondary smelting processes used in the production of copper, lead and zinc. This paper illustrates the ELVs for the targeted source categories, explaining the rationales and approaches used to set the values. The amended Law is to be enforced on April 1, 2018. From future perspectives, checks of the material flow of mercury, following up on the state of compliance, review of the ELVs and of the measurement and monitoring methods have been noted as important issues.

A Study for Improving the Vehicle Dismantling and Recycling System of Korea (한국의 자동차 해체·재활용 제도 개선 연구)

  • Lyou, Byung-Woon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.4
    • /
    • pp.24-30
    • /
    • 2016
  • In Korea, the Vehicle Dismantler and Recycler industry is supervised by the Ministry of Land, Infrastructure and Transport under the Automobile Management Act. Also, Korean Automotive recycling businesses are supervised by the Minister of Environment under the Resource Recirculation Act. The main concern of the Minister of Environment is how the wastes from Dismantled vehicles will be environmentally removed, stored, treated, recycled or disposed. In 2000, the European Union (EU) adopted the End-of-Life Vehicles Directive (2000/53/EC) which required Members to ensure the collection, treatment and recovery of end-of-life vehicles (ELVs). The Directive, the most tightly regulated and precautionary legal systems, required that the last owner of a vehicle could drop off the ELV at an authorized treatment facility and that the producers of the ELV should pay the cost of the program. The adoption of the ELVs directive has led the development of Automotive Dismantler and Recycler networks to reuse, refurbish, remanufacture, recycle and recover parts and materials embedded in ELVs. Also, the ELVs directive which has had an insignificant impact on Korean manufacturers has strong presence in the European market and has been successfully externalized on them. The Korean manufacturers not only achieve the 85% recycling target set by the ELVs directive but also meet the Extended Producer Responsibility (EPR) which requires manufacturers to contribute dismantling process. In order to improve the Korean vehicle dismantling and recycling system, the Automobile Management Act and the Resource Recirculation Act should be harmonized. Particularly the roles of the Ministry of Land, Infrastructure and Transport and the Minister of Environment should be sharply divided. Like Japan, the ELV management needs to be highly centralized, regulated, and controlled by the ministry specialized in Vehicle, namely the Ministry of Land, Infrastructure and Transport and the sub organizations. Like EU Members, recovery, reuse, and recycling must be distinguished. Recovery is defined as the final productive use of the parts and materials embedded in ELVs, which includes reuse and remanufacture of parts and recycling of the other materials. Dismantling process and reuse and remanufacture of parts must be governed by the Ministry of Land, Infrastructure and Transport. For environmental recycling or disposal of waste materials, such as CFCs, glass and plastic material, and toxic substances, governmental financial support system should be in place.

The Recycling of End-of-Life Vehicles(ELVs) in Taiwan

  • Tsai, Min-Shing;Chen, Wei-Sheng;Wu, Chung-Liu
    • Resources Recycling
    • /
    • v.14 no.3
    • /
    • pp.6-15
    • /
    • 2005
  • The overall area of Taiwan is 36,006 km$^2$ and population was about 22,535,000 persons in 2003. The population density became 625persons/km$^2$. The economic of Taiwan progress since 1970. Gross national production in 2004 increased by 2.3 trillion or 493% relative to 1981. The number of automobiles in 1981 was 821,862, and increase to 6,389,186 in 2004. The number of motorcycles in 1981 were 4,591,547 and increase to 12,793,950 in 2004. The vehicle growth rate of automobile and motorcycle was 677% and 178% respectively. The recycling end-of-life vehicles(ELVs) is specified in the Waste Disposal Act. Its main content is the system of asking the vehicle manufacturer and importing agents, who are responsible for recycling of the ELVs. The recycling task on ELVs was startedinitially in 1993. It is required that the manufacturers and importing agents deposit certain ratios of Waste Vehicle Disposal Fees proportional to the number of vehicle they manufacture and import into Taiwan under sales. This report will introduce the current status of ELVs recycling in Taiwan, and the future direction, as well as measures proceeding for the EPA- Fund Management Committee(RMFC) operating in the fiture.

Gasification melting characteristics of Automobile shredder residue in 5t/d shaft pilot plant (5톤/일 shaft형 pilot plant에서 자동차 폐차 잔재의 가스화 용융 특성)

  • Roh, SeonAh;Kim, WooHyun;Yun, JinHan;Hong, ByeongKwon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.160-160
    • /
    • 2010
  • ELVs (End-of-Vehicles) in Korea incrasease continusely because of increase of used car. Automobile Shredder Residue (ASR) is final product of ELVs (End-of-Vehicles) after recycling. Automobile Shredder Residue are composed of light and heavy fluffs and soil/dust. In this study, 5 ton/day pilot plant of shaft type has been designed and constructed and 15 times of test run were performed. For the stable operation, operation conditions such as the amount of fed ASR and cokes, air flow and temperature in the gasification melting system have been changed and the composition of the produced gas such as $H_2$, CO and $CH_4$ and air pollution compound including dioxin discharged from the stack have been analyzed.

  • PDF

The Status of Recycling Technology of Hyundai and Kia

  • Park, Joon-Chul
    • Resources Recycling
    • /
    • v.14 no.3
    • /
    • pp.37-47
    • /
    • 2005
  • Global automobile manufacturers have made a lot of efforts to comply European Union (EU) end-of-life vehicles (ELVs) Directive. Hyundai and Kia have also made a lot of studies to eco-friendly treat our ELVs. Some results of studies have already reflected on our models to produce eco-friendly vehicles. This paper introduces our status of the recycle technology and our measures to respond to EU ELVs Directive.

Recycling of Copper & Nickel in ASR to satisfy the EU ELV Directive (유럽연합 환경기준 충족을 위한 자동차폐기물 내의 구리와 니켈 재활용에 대한 연구)

  • Lee, Hyun-Chang;Park, Woo-Cheul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1729-1734
    • /
    • 2009
  • About 40 million automotive vehicles all over the world and 0.55 million in Korea were retired from use annually. Every nation is desperate to decrease environmental pollution by ELVs(End of Life Vehicles) and try to tighten the regulations. Europe passed laws requiring OEMs to increase vehicles' recovery and reuse rate to 95% by 2015 from current 84%. The ferrous parts, 75% of total automobile weight, are almost recycled whereas the remaining 25% of the non-metal -predominantly plastics as well as form, glass and rubber- and the non-ferrous materials -copper, nickel and aluminium- end up in landfills. The recycling status of non-ferrous materials represented by copper and nickel is reviewed and how much the recycling rate will be improved is calculated.

Recycling of Copper in ELVs. (폐자동차에서 구리의 재활용 현황과 개선책)

  • Lee, Hyun-Chang;Park, Woo-Cheul;Choi, Shin-Hyeung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.536-538
    • /
    • 2009
  • 현재 세계 각 국은 폐차에 의한 환경오염을 줄이기 위하여 규제를 강화하고 있으며 특히 EU(European Union)에서는 현재 85%에 머무르고 있는 재활용율을 2015년까지 95%로 올릴 것을 요구하고 있다. 이에 발맞추어 2007년 우리나라도 "전기전자제품 및 자동차의 자원순환에 관한 법률"을 제정하였다. 자동차 중량의 75%를 차지하는 철은 비교적 높은 재활용율을 보이고 있으나 나머지 25%를 구성하는 플라스틱, 유리 고무 등의 비금속류와 구리, 니켈 알루미늄 등의 비철금속류는 재활용율이 이에 미치지 못하고 있다. 본 논문에서는 자동차에서 많이 사용되는 대표적인 비철금속인 구리에 대하여 재활용의 현주소를 점검하고 앞으로의 개선책을 논의하고자 한다.

  • PDF