• Title/Summary/Keyword: ELID(Electrolytic In-Process Dressing)

Search Result 39, Processing Time 0.026 seconds

Internal Cylindrical Grinding with Super Abrasive Wheel and Electrolytic In- process Dressing (ELID를 이용한 초미립 숫돌의 원통내면연삭)

  • Jun Qian;Gyung Nyun Kim;Hitoshi Ohmori;Hae Do Jeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.155-162
    • /
    • 2000
  • 전해 인프로세스 드레싱(ELID)의 응용기술로써 간헐적 드레싱(ELID II) 및 무전극 드레싱(ELID III)이 원통내면 마무리 연삭에 이용되고 있다. 주철본드(CIB-D) 및 메탈레진본드 다이아몬드 숫돌(HRB-D)이 이 방식들에 사용되고 있다. 경면 가공에 있어서 이 두방식은 미립의 숫돌이용으로 일반연삭기에 정밀부속 장치의 보완없이 이용될 수 있다. ELID II 연삭에서 CIB-D숫돌은 파이프 형상의 전극에 의하여 간헐적으로 드레싱되고, 반면에 MRB-D 숫돌은 인프로세스 드레싱 되며 전극은 필요로 하지 않는다. 본 연구에서는 ELID II 및 ELID III 방식에 있어서, 연삭조건 및 연삭입자크기에 대한 연삭특성을 비교검토 하였다. 그 결과, ELID II, III방식 공히 대단히 작은 표면거칠기를 갖는 경면이 얻어짐을 확인하였다.

  • PDF

A Study on the Cylindrical Grinding Technology by Electrolytic In-Process Dressing(ELID) Method (전해인프로세스드레싱법에 의한 초정밀 원통 연삭기술 연구)

  • Je, Tae-Jin;Lee, Eung-Suk
    • 연구논문집
    • /
    • s.28
    • /
    • pp.59-71
    • /
    • 1998
  • The ELID(electrolytic in-process dressing) grinding method is a new precision grinding technique with the special electrolytic in-process dressing by metal bonded grinding wheel, fluid, and power supply. It is possible to make a efficient precision machining of hard and brittle materials such as ceramics, hard metals, and quenched steels by using this method, In this study, a new efficient precision grinding method with ELID was attempted for application to the machining and finishing processes of cylindrical structural components. And, we try to develop the cylindrical grinding technique for mirror surface of ceramics, tungsten carbide and SCM steel, and for the high efficiency grinding of machined parts, for example, ball screw shaft. Electrical characteristics of three different wheel grit sizes of #325, #2000 and #4000 were investigated experimentally. ELID grinding method is proved to be useful for mirror surface generation and efficient machining.

  • PDF

Development of process monitoring system in ELID grinding (ELID 연삭에서 가공 상태 감시 시스템 개발)

  • 서영호;김화영;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.599-602
    • /
    • 2000
  • A new dressing technique with utilizes electrolytic phenomenon for realizing effective mirror surface grindings with metal bonded super-abrasive wheels is called “Electrolytic In-process Dressing Grinding”. This technique enabled metal bonded micro-grain wheels, such as micro-grain cast iron fiber bonded wheels, to be used for mirror surface finish processes effectively. But this technique requires a lot of knowledge and experience to perform. And the condition of dressing is variable according to the time. Therefore adaptation of Monitoring and Control technique is needed.

  • PDF

(Electrolytic in-Process Dressing)-Grinding of Ceramics (세라믹스의 ELID연삭가공)

  • Ohmori, Hitoshi;Katahira, Kazutoshi
    • Ceramist
    • /
    • v.9 no.6
    • /
    • pp.37-41
    • /
    • 2006
  • A novel grinding technology, known as ELID (Electrolytic In-Process Dressing), which incorporates 'inprocess dressing' of metal- bonded diamond grinding wheels, provides continuous protruding abrasives effectively applied to ceramic grinding. This article describes the ELID-grinding method and introduces its application examples on ceramics

  • PDF

A Study on the Generation of Mirror-like Surface and Simulation in Grinding Condition by Inprocess Electrolytic Dressing (연속 전해드레싱의 연삭조건변화에 의한 경면생성 및 시뮬레이션에 관한 연구)

  • 김정두;이연종
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.2962-2969
    • /
    • 1993
  • Recently, a study on the mirror-like surface grinding of brittle materials is active and as branch of these study, new dressing method for superabrasive wheel, electrolytic inprocess dressing(Elid) was developed. Using Elid, the mirror-like surface of brittle material can be generated without polishing or lapping process. In the future, Elid grinding will take important place in industry. But so far the analysis on Elid grinding was not quantitative but qualitative. In this study, The purpose is the quantitative analysis on Elid grinding by computer simulation, For computer simulation, the mean and the variance of the abrasive distribution were measured by tracing of the grinding wheel with stylus in transverse direction in the case of respective dressing current condition. This measurement result in a density distribution of abrasive by mathematical formulation using statistical method. The prediction of the surface roughness in Elid grinding was based on this density distribution.

A Study on the Mirror Surface Grinding of Optical Glass Utilizing Electrolytic In-Process Dressing (전해 인프로세스 드레싱을 이용한 Optical glass계의 경면연삭에 관한 연구)

  • 조주현;원종호;박원규;이진오;김민수;김성수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.410-415
    • /
    • 2003
  • Electrolytic In-process Dressing (ELID) technique for metal bonded diamond grinding wheel has been developed for mirror surface grinding of hard and brittle materials. This study process optical glass in using Electrolytic In-process Dressing. In using to main variable wheel speed (400rpm~2000rpm),feed rate (5$\mu\textrm{m}$/min~25$\mu\textrm{m}$/min),depth of cut (3$\mu\textrm{m}$~5$\mu\textrm{m}$),dressing and spray. We measured surface roughness in representative brittle materials

  • PDF

In-process Truing of Metal-bonded Diamond Wheels for Electrolytic In-process Dressing (ELID) Grinding

  • Saleh, Tanveer;Biswas, Indraneel;Lim, Han-Seok;Rahman, Mustafizur
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.3-6
    • /
    • 2008
  • Electrolytic in-process dressing (ELID) grinding is a new technique for achieving a nanoscale surface finish on hard and brittle materials such as optical glass and ceramics. This process applies an electrochemical dressing on the metal-bonded diamond wheels to ensure constant protrusion of sharp cutting grits throughout the grinding cycle. In conventional ELID grinding, a constant source of pulsed DC power is supplied to the ELID cell, but a feedback mechanism is necessary to control the dressing power and obtain better performance. In this study, we propose a new closed-loop wheel dressing technique for grinding wheel truing that addresses the efficient correction of eccentric wheel rotation and the nonuniformity in the grinding wheel profile. The technique relies on an iterative control algorithm for the ELID power supply. An inductive sensor is used to measure the wheel profile based on the gap between the sensor head and wheel edge, and this is used as the feedback signal to control the pulse width of the power supply. We discuss the detailed mathematical design of the control algorithm and provide simulation results that were confirmed experimentally.

Relationships between Wheel Velocity and Surface Roughness in the Electrolytic In-Process Dressing(ELID) Grinding (전해드레싱연삭에서 숫돌주속과 표면거칠기의 관계)

  • 차명섭
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.459-464
    • /
    • 2000
  • In this paper, it verifies the relationships between wheel velocity and surface roughness with the mirror surface grinding using electrolytic in-process dressing (ELID). In the general, as wheel velocity is high, surface roughness is better on the base of grinding theory. However, the relationships between wheel velocity and surface roughness is undefined due to the effect of electro-chemical dressing and the characteristics of materials. According to above relationships, ELID grinding experiment is carried out by following the change of wheel velocity. As the result of this study, it is found that surface roughness is not better as linearly as the increase of wheel velocity, but the limit of wheel velocity exists according to the characteristics of materials. Also, in contradiction to the present trend of high wheel velocity of manufacturing system for high surface integrity, it is able to expected to the base on the development of new ultra precision grinding method with the practicality of mirror surface grinding using ELID grinding method.

  • PDF

Mirror grinding with Electrolytic In-process Dressing Method (전해인프로세스드레싱에 의한 경면연삭기술개발)

  • 이응숙;제태진;강재훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.57-60
    • /
    • 1995
  • Recently, ELID (electrolytic in-process dressing) grinding technique is developed. It is possible to make a efficient precision machining of hard materials such as ceramic hard metals, and quenched steels. This paper deals with some typical applications of ELID-grinding for cylindrcal machining. The significant advantages, performance and characteristics on mirror surface grinding for external surface are described.

  • PDF

Study on nano-level mirror surface finishing on mold core to glass lens molding (유리렌즈 성형 금형의 나노 경면가공)

  • Kwak, Tae-Soo;Kim, Cyung-Nyun;Lee, Yong-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.97-104
    • /
    • 2006
  • ELID(Electrolytic In-process Dressing) grinding is an excellent technique for mirror grinding of various advanced metallic or nonmetallic materials. A polishing process is also required for elimination of scratches present on ELID grinded surfaces. MAP(Magnetic Assisted Polishing) has been used as polishing method due to its high polishing efficiency and to its resulting in a superior surface quality. This study is describing an effective fabrication method combining ELID and MAP of nano-precision mirror grinding for glass-lens molding mould. It also presents some techniques for achieving the nanometer roughness of the hard metals, such as WC-Co, which are extensively used in precision tooling material.