• Title/Summary/Keyword: EHP(electric heat pump)

Search Result 22, Processing Time 0.023 seconds

Performance examination appraisal of gas driven engine heat pump(GHP) (GHP 성능 진단 평가)

  • Kim, Beom-Chan;Park, Jung-Ha;Kim, Sung-Soo;Kang, Yong-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.376-381
    • /
    • 2007
  • GHP system utilize national gas as a heat source. It reduces electric peak demand in summer and maintains a constant performance in winter by recovering the waste heat from the engine. Although the initial investment cost of GHP is higher than that of EHP, the overall operating cost of GHP is cheaper than of the EHP. In this study, items for dissatisfaction were summarized based on the results of user questionnaire(200 users), and field tests were made for 10 GHP installation places. The measured COP was estimated much lower than the rated COP by the manufacturer mainly due to partial load operation.

  • PDF

Economic Analysis of Heat Pump System in Educational Building -Focused on the High School of Twenty Four Classes- (교육용 건축물의 히트펌프 냉난방시스템에 대한 경제성 분석 -24학급 규모의 고등학교를 중심으로-)

  • Park, Ryul;Park, Min-Yong;Kim, Jong-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.10
    • /
    • pp.879-887
    • /
    • 2003
  • Buildings with heating and cooling systems have been increased, since the requirement of thermal comfort for residents is grown. Heating and cooling systems, have been changed from two separate systems to one multi-function system which includes both heating and cooling. Especially, heat pump heating and cooling system has been adopted for general classrooms in schools since education environment improvement project has been launched. This research suggests the best option for the heat pump heating and cooling system in educational buildings through economic assessments for four alternative systems based on electric heat pump (EHP) and gas engine driven heat pump (GHP), which are most widely used for elementary, middle and high schools. The model buildings are in the Y high school which has 24 classes of new construction building, which will be built soon. Annual energy consumption for alternative systems uses BECS 3.10, which can be used for system simulation.

Analysis of the Operation Conditions and Energy Consumption for Each Energy Source (에너지원별 냉방기기 에너지 소비 및 운영현황 분석)

  • Kang, Yong-Tae;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.195-200
    • /
    • 2009
  • The objectives of this study are to analyze of energy consumption and operation conditions of each cooling system for gas and electric driven systems, and to compare operating cost for five different cooling systems; ice storage system, system air-condition, turbo chiller as the electric driven cooling systems, and absorption chiller and Gas driven Heat Pump (GHP) as the gas driven cooling systems. The sample designs are carried out based on the types of business, capacity, installation region and year.

  • PDF

Analysis of Energy Consumption of Buildings in the University (대학교 건축물의 에너지소비 특성 및 변화 추이 분석:서울소재 A대학교의 에너지 소비 실태를 중심으로)

  • Park, Kang-Hyun;Kim, Su-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.9
    • /
    • pp.633-638
    • /
    • 2011
  • Increasing demand for comfortable indoor environment and air-conditioning demand is also increasing. Building energy consumption in university which is made up of many different kinds factor was researched. Central control air-conditioning systems are being replaced with individually controlled air-conditioning system. The amount of growth of electricity consumption is due to the increasing demand of EHP. Conversely, the demand for absorption chiller-heater is shrinking. Winter and in summer a lot of electricity and gas usage. On the other hand, showed less energy in spring and autumn. Increase the amount of electricity than the degree of decline in gas consumption was higher. Can be considered as transitional phenomena. Because EHP and the absorption chiller-heater are used at the same time in some of the buildings. To use energy efficiently is needed additional research about environmental impact, economic evaluation.

A Study on the Optimization of Heating and Cooling System in University Campus (대학 캠퍼스 냉·난방시스템 최적화 방안 연구)

  • Park, So-Yeon;Park, Hyo-Soon;Lee, Sang-Hyeok;Kim, Ji-Yeon;Hong, Sung-Hee
    • KIEAE Journal
    • /
    • v.10 no.6
    • /
    • pp.139-144
    • /
    • 2010
  • The demands are increasing for the efficient heating and cooling system and thermal comfort environment because of changes in climate and environment, and deterioration of buildings and facilities can cause education budget to increase. So the study to apply heating and cooling system to university is urgently needed to improve an optimum energy saving system, educational environment and convenience of maintenance. For this reason, we selected a university campus in Seoul then came to understand the current situation and found some problems. We drew alternatives from comparative analysis of them. It selects representative building and carries out economic analysis to evaluate characteristics of energy consumption and economics on each type of heating and cooling system. As a result we drew the optimum system from those processes as previously stated. We studied 3 available systems, absorption chiller, EHP(Electric Heat Pump) and GHP(Gas Engine Heat Pump). According to LCC analysis suppose that the value of EHP is 1, it came out that the value of absorption chiller is 1.5 and the value of GHP is 2.2. This study, suggesting the optimum heating and cooling system, will support educational and research activities furthermore effect to maximize energy efficiency. Ultimately it is expected that it will contribute to make eco-friendly Green Campus.

Economical Analysis of a Small Capacity Heat Pump utilizing Heat Sources of Air, Geothermal and Underground Water Tank using Dynamic Simulation (동특성 시뮬레이션을 이용한 공기, 지열 및 지하 저수조 열원 소형 열펌프의 경제성 분석)

  • Yang, Chul-Ho;Kim, Youngil;Chung, Kwang-Seop
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.4
    • /
    • pp.17-23
    • /
    • 2012
  • Due to reinforcement of international environment regulation and high oil prices, interest in renewable energy is growing. Countries participating in UNFCCC are continuously putting efforts in reducing greenhouse gas after enforcing Kyoto Protocol into effect on Feb, 2005. Energy used in buildings, which relies heavily on fossil fuel accounts for about 24% of total energy consumption. In this study, air, geothermal and water source heat pump systems for an 322 $m^2$ auditorium in an office building is simulated using TRNSYS version 17 for comparing energy consumptions. The results show that energy consumptions of air, geothermal and water source heat pumps are 14,485, 10,249, and 10,405 kWh, respectively. Annual equal payments which consider both initial and running costs become 5,734,521, 6,403,257 and 5,596,058 Won. Thus, water source heat pump is the best economical choice.

Economic Investigation of Small Scale Cogeneration System in a School Dormitory of Busan Region (부산지역 학교 기숙사에서의 소형열병합발전 시스템의 경제성 분석)

  • Song, Jae-Do;Ku, Bon-Cheol;Kang, Yul-Ho;Park, Jong-Kyu;Lee, Jae-Keun;Ahn, Young-Chull
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.9
    • /
    • pp.657-662
    • /
    • 2012
  • The cogeneration system can operate at efficiencies greater than those achieved when heat and power are produced in separate. The optimal system can be determined by selecting the auxiliary system combined with cogeneration system. In the present study, economic investigation has been conducted with the cogeneration electric heat pump(EHP) system and the cogeneration absorption chiller(AC) system to install in a school dormitory. To analyze life cycle cost(LCC), cost items such as initial investment costs, annual energy costs and maintenance costs of each system have been considered. The initial investment cost is referred to the basis of estimated costs, and annual energy costs such as the electric power and gas consumption are based on the data in a school dormitory. LCC is evaluated with the present worth method. Considering investigated results, the initial investment cost of the cogeneration EHP system is more profitable about 24% than that of the cogeneration AC system. The energy cost of the cogeneration EHP system is more profitable about 8% than the cogeneration AC system. The LCC shows that the cogeneration EHP system is the most effective system in the school dormitory.

Evaluation of actual Energy consumption & Simulation of Gas Engine VRF System and Comparison with Electric VRF System (가스 엔진 VRF시스템의 에너지 실사용량 & 시뮬레이션 평가와 전기 구동 VRF 시스템과의 성능비교에 관한 연구)

  • Choi, Sul-Geon;Jeon, Jong-Ug;Kim, Kang-Soo
    • KIEAE Journal
    • /
    • v.17 no.4
    • /
    • pp.67-74
    • /
    • 2017
  • Purpose: As the recent climate environment changes so rapidly, environmental problems such as hot weather and fine dust have occurred, and interest in environmental policies and technology development is increasing in countries around the world. Similarly in the Architecture, researches to reduce greenhouse gas emissions and to reduce energy application are actively conducted. Looking at previous studies, it is analyzed that the electric VRF is more energy efficient than the gas engine VRF. However, energy costs have changed due to recent price hikes and discounts on gas charges due to high electricity consumption in summer. Method: In this study, the actual building of Gas Engine VRF system was modeled using SketchUp program, and EnergyPlus was used to simulate actual building. Also, Electric VRF system was simulated, and compared with Gas Engine VRF system. Result: The total secondary energy requirement of Electric VRF system was 19.6% less than that of the Gas Engine VRF system, But when analyzing with primary energy requirement, EHP used 15.8% more energy. CO2 emissions were also estimated to be 16.9% more EHP. Energy costs were 14.8% more in Electric VRF systems, because their electricity charges are 0.6 to 160% more expensive than gas charges.

Comparison Study of Air-conditioning Systems using LCC Analysis (LCC를 이용한 공조 방식별 비교 연구)

  • Kim, Joung-Kuk;Chung, Kwang-Seop;Kim, Young-Il
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.3
    • /
    • pp.12-18
    • /
    • 2012
  • The purpose of this study is to make an economic analysis(Life cycle cost) of selecting optimal air conditioning system for a research building which is 8 stories with a total floor area of $32,010m^2$. Energy consumptions of three proposed air-conditioning systems(Alt-1,2,3) that reflect the government green-growth policy are calculated and compared. The results show that life cycle cost of Alt-3(Ventilation DX AHU+EHP) is less than Alt-1(EHP+ventilation DX AHU) by 5.1%, and Alt-2(Absorption chiller/heater+EHP) by 34.3%. Annual energy consumption of Alt-3 is less than Alt-1 by 9.9%, and Alt-2 by 37.4%. Annual $CO_2$ emission of Alt-3 is less than Alt-1 by 9.9%, and Alt-2 by 0.2%.

질의 및 회신 ①-대한설비건설협회 질의에 건교부 회신

  • Korea Mechanical Construction Contractors Association
    • 월간 기계설비
    • /
    • no.7 s.192
    • /
    • pp.64-67
    • /
    • 2006
  • 최근들어 냉난방시스템의 변화로 인하여 오피스텔, 원룸 등의 신축 및 개보수 공사에 시스템에어컨 등의 시공이 활발해짐에 따라 기계설비공사업을 등록하지 않은 장비제조 또는 판매업체가 시공하는 현상이 많아지고 있다. 이에 따라 대한설비건설협회는 건교부에“시스템에어컨의 설치금액이 1천만원 이상인 경우 기계설비공사업을 등록하지 않은 자가 설치∙시공할 경우 처벌조항”에 대하여 질의한 결과, 건교부가“냉난방 등을 조립∙설치하는 공사는 기계설비공사업의 업무내용에 해당되는 것으로 이를 어길 경우 1년 이하의 징역 또는 1천만원 이하의 벌금에 처한다”는 회신을 보냈다. 시스템에어컨이란 건축물에 냉방 및 난방을 하기 위하여 건물의 냉∙난방 시스템을 건물에 설치하는 공조시스템으로 냉∙난방을 위한 에너지원으로 가스(LNG, LPG)를 사용하는 GHP(Gas Engine Heat Pump)와 전기를 에너지원으로 하는 EHP(Electric Heat Pump) 방식으로 구분된다. 시스템에어컨을 설치하기 위해서는 압축기에 해당하는 실외기를 건물 외부에 설치하고, 여러 가지 타입의 다수의 실내기를 실내에 설치한 후 냉매배관과 응축수 배관을 연결, 시공해야 한다. 따라서 이러한 공사는 건설산업기본법시행령 별표의 1의 기계설비공사업의 업무내용에 포함어 있다. 대한설비건설협회가 질의한 내용과 건교부의 회신 내용은 다음과 같다.

  • PDF