• Title/Summary/Keyword: EHD(Electro-hydrodynamics)

Search Result 3, Processing Time 0.022 seconds

Effect of Conductive Particles on Electrical Conductivity using EHD Ink Jet Printing Technology (EHD Ink Jet Printing 기술을 이용한 Conductive Particle의 전기전도도에 미치는 영향)

  • Ahn, Ju-Hun;Lee, Yong-Chan;Choi, Dae-San;Lee, Chang-Yull
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.6
    • /
    • pp.1-8
    • /
    • 2018
  • ACF, which is used for the transparent electrode film is manufactured by the thermocompression method with conductive particles. However, the method has disadvantages since there are many wasted materials and the process is complex. To overcome the demerits of the conventional method, EHD printing technology with conductive particles ink is proposed. The line thickness of patterning is influenced by the characteristics of the inks and the printing conditions. Therefore, it is salient to find the most conducive conditions for the micro patterning. In this paper, the ink with conductive particles was manufactured, and the patterning results were obtained by varying the nozzle thickness and the flow rate. The electrical conductivity according to the ejection of the particles ink is obtained.

NUMERICAL INVESTIGATION ON CAPTURE OF NANOPARTICLES IN ELECTROSTATIC PRECIPITATOR WITHOUT CORONA DISCHARGER (코로나 방전기가 없는 전기집진기의 나노입자 집진에 관한 수치해석)

  • Lee, J.W.;Jang, J.S.;Lee, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.103-108
    • /
    • 2010
  • This article presents computational fluid dynamics (CFD) simulations of nanoparticle movements and flow characteristics in laboratory-scale electrostatic precipitator (ESP) without corona discharge, and for simulation, it uses the commercial CFD program(CFD-ACE) including electrostatic theory and Lagrangian-based equation for nanoparticle movement. For validation of CFD results, a simple cylindrical type of ESP is simulated and numerical prediction shows fairly good agreement with the analytical solution. In particular, the present study investigates the effect of particle diameter, inlet flow rate, and applied electric potential on particle collection efficiency and compares the numerical prediction with the experimental data, showing good agreement. It is found that the particle collection efficiency decreases with increasing inlet flow rate because the particle detention time becomes shorter, whereas it decreases with the increase in nanoparticle diameter and with the decrease of applied electric voltage resulting from smaller terminal electrostatic velocity.

  • PDF

Development of Dispenser System with Electrohydrodynamic and Voice Coil Motor for White Light Emitting Diode (백색 LED 제조를 위한 정전기력과 보이스코일모터를 이용한 디스펜서 시스템 개발)

  • Kang, Dong-Seong;Kim, Ki-Beom;Ha, Seok-Jae;Cho, Myeong-Woo;Lee, Woo-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6925-6931
    • /
    • 2015
  • LED(Light Emitting Diode) is used in various filed like a display because of low power consuming, long life span, high brightness, rapid response time and environmental-friendly characteristic. General fabrication method is combination blue light LED chip with yellow fluorescent substance. Because this way is suitable for industry field in terms of convenience, economic, efficiency. In white light LED packaging process, encapsulation process that is dispensing fluorescent substance with silicon to blue light LED chip is most important. So, in this paper we develop EHD pump system using voice coil motor and electrostatic pump for dispensing fluorescent substance. For these things we conduct basic test about liquid surface profiles by voltage and process time. Through this data we decide optimal process condition and verify the optimal condition using design of experiment method. And to confirm uniformity of the condition, we conduct repeat dispensing test.