• Title/Summary/Keyword: EHB

Search Result 15, Processing Time 0.021 seconds

Fuzzy Sliding Mode Control for Cornering Performance Improvement of 4WD HEV (퍼지 슬라이딩 모드를 이용한 4WD 하이브리드 차량의 선회성능 향상)

  • Cheong, Jeong-Yun;Ryu, Sung-Min;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.8
    • /
    • pp.735-743
    • /
    • 2010
  • A new Fuzzy sliding mode controller is proposed to improve the cornering performance of the four wheel hybrid vehicles. The Fuzzy sliding mode control is applied for the control of rear motor and EHB (Electro-Hydraulic Brake) to improve the cornering performance. The modeling of the automobile is simplified that each of the two wheels is modeled as two degrees of freedom object and the friction coefficient between the wheel and the ground is assumed to be constant. The output of the Fuzzy sliding mode algorithm is the direct yaw moment for the rear wheels, which compensates for the slip angle. Through the simulations using ADAMS and MATLAB Simulink, the cornering performance of the proposed algorithm is compared to the conventional PID to show the superiority of the proposed algorithm. In the simulation experiments, the J-Turn and single lane change are used for each of the Fuzzy sliding mode algorithm and PID controller with the optimal gains which are tuned empirically.

A Feature of Stellar Density Distribution within Tidal Radius of Globular Cluster NGC 6626 in the Bulge Direction

  • Chun, Sang-Hyun;Lim, Dong-Wook;Kim, Myo-Jin;Sohn, Young-Jong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.82.1-82.1
    • /
    • 2010
  • We have investigated the spatial configuration of stars within the tidal radius of metal poor globular cluster NGC 6626 in the bulge direction. Data were obtained in near-IR J,H,Ks bands with wide-field ($20'\times20'$) detector, WIRCam at CFHT. To trace the stellar density around target cluster, we sorted cluster's member stars by using a mask filtering algorithm and weighting the stars on the color-magnitude diagram. From the weighted surface density map, we found that the stellar spatial distributions within the tidal radius appear asymmetric and distorted features. Especially, we found that more prominent over-density features are extending toward the direction of Galactic plane rather than toward the directions of the Galactic center and its orbital motion. This orientation of the stellar density distribution can be interpreted with result of disk-shock effect of the Galaxy that the cluster had been experienced. Indeed, this over-density feature are well represented in the radial surface density profile for different angular sections. As one of the metal poor globular clusters with extended horizontal branch (EHB) in the bulge direction, NGC 6626 is kinematically decoupled from the normal clusters and known to have disk motion of peculiar motion. Thus, our result will be able to add further constraints to understand the origin of this cluster and the formation of bulge region in early universe.

  • PDF

Estimation of Tire Braking Force and Road Friction Coefficient Between Tire and Road Surface For Wheel Slip Control (휠 슬립 제어를 위한 타이어와 노면 사이의 타이어 제동력 및 노면 마찰계수 추정)

  • Hong, Dae-Gun;Huh, Kun-Soo;Yoon, Pal-Joo;Hwang, In-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.517-523
    • /
    • 2004
  • Recently, wheel slip controllers with controlling the wheel slip directly has been studied using the brake-by-wire actuator. The wheel slip controller is able to control the braking force more accurately and can be adapted to various different vehicles more easily than the conventional ABS systems. The wheel slip controller requires the information about the tire braking force and road condition in order to achieve the control performance. In this paper, the tire braking forces are estimated considering the variation of the friction between brake pad and disk due to aging of the brake, moisture on the contact area or heating. In addition, the road friction coefficient is estimated without using tire models. The estimated performance of tire braking forces and the road friction coefficient is evaluated in simulations.

Ecklonia cava-Hizikia fusiformis complex extract alleviates inflammation in human lung epithelia

  • Lee, Sung-Gyu;Kwon, Sang-Oh
    • Journal of Plant Biotechnology
    • /
    • v.49 no.1
    • /
    • pp.90-98
    • /
    • 2022
  • This study was performed to determine the optimal ratio for preparing an extract comprising the Ecklonia cava and Hizikia fusiformis complex as a therapeutic material for alleviating inflammatory respiratory diseases. First, to examine the optimal ratio for preparing the complex (SD-EH), Ecklonia cava and Hizikia fusiformis extracts were used; four extracts with different mixing ratios were prepared. The effects of the SD-EH extract on MUC5AC mRNA expression in PMA-treated NCI-H292 cells were analyzed; it was confirmed that the MUC5AC expression was significantly reduced after treatment with the SD-EHA-001 (E(100) : H(0)), SD-EHB-001 (E(90) : H(10)), SD-EHC-001 (E(80) : H(20)), and SD-EHD-001 (E(70) : H(30)) extracts. Western blotting was used to determine whether the SD-EH extract affects the expression levels of COX-2 and MMP-9 in PMA-treated A549 cells. The protein expression levels of COX-2 and MMP-9 were significantly lower (p < 0.001) in the cells treated with the SD-EHC-001 (E(80):H(20)), SD-EHD-001 (E(70) : H(30)), and SD-EHE-001 (E(60) : H(40) extracts than in the cells treated with PMA alone. The SD-EHC-001 (E(80) : H(20)) extract markedly downregulated the expression levels of MUC5AC, COX-2, and MMP-9. Therefore, the SE-EH extract may serve as a potential therapeutic agent for treating inflammatory respiratory diseases.

Robust Wheel Slip Control for Brake-by-Wire System (Brake-by-Wire 시스템을 위한 강인한 휠 슬립 제어)

  • Hong Daegun;Huh Kunsoo;Kang Hyung-Jin;Yoon Paljoo;Hwang Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.102-109
    • /
    • 2005
  • Wheel-slip control systems are able to control the braking force more accurately and can be adapted to different vehicles more easily than conventional ABS systems. But, in order to achieve the superior braking performance through the wheel-slip control, real-time information such as the tire braking force is required. For example, in the case of EHB (Electro-Hydraulic Brake) systems, the tire braking force cannot be measured directly, but can be approximated based on the characteristics of the brake disk-pad friction. The friction characteristics can change significantly depending on aging of the brake, moisture on the contact area, heat etc. In this paper, a wheel slip The proposed wheel slip control system is composed of two subsystems: braking force monitor and robust slip controller In the brake force monitor subsystem, the tire braking forces as well as the brake disk-pad friction coefficient are estimated considering the friction variation between the brake pad and disk. The robust wheel slip control subsystem is designed based on sliding mode control methods and follows the target wheel-slip using the estimated tire braking forces. The proposed sliding mode controller is robust to the uncertainties in estimating the braking force and brake disk-pad friction. The performance of the proposed wheel-slip control system is evaluated in various simulations.