• Title/Summary/Keyword: EGR System

Search Result 185, Processing Time 0.022 seconds

A Study on Exhaust Gas Characteristics and Engine Performance of EGR Valve Installed Engine for Development of EGR Valve Test System (EGR 밸브 평가 장치 개발을 위한 EGR 장착 엔진 성능 및 배출 가스 특성 연구)

  • Na, D.H.;Ko, C.S.;Seo, H.J.;Lee, C.E.
    • Journal of Drive and Control
    • /
    • v.9 no.4
    • /
    • pp.52-57
    • /
    • 2012
  • In this study, in order to understand contents and ranges of design for the EGR Valve test system for improving quality and performance of EGR Valve, engine performance and exhaust gas characteristic of 3L-class diesel engine was analyzed. Experimental operation of engine performance test was performed with 50% engine load and 20% and 100% opening ratio of EGR Valve. From test of performance and exhaust gas characteristic of engine, torque output of engine and temperature and pressure of inlet and outlet of EGR Valve were measured. As a result, for design of EGR Valve test system, input fluid flow of EGR Valve must be set the same amount with exhaust gas flow that was below of engine speed of 2,500 rpm, and temperature of inlet of EGR Valve must be set under about $510^{\circ}C$. And the difference of temperature between inlet and outlet of EGR Valve must be over than about $200^{\circ}C$. Exhaust gas of inlet and outlet of EGR Valve were under 1 bar that was not considerable, and the difference of pressure between inlet and outlet of EGR Valve were under 1 bar that could not effect on mechanical operation of EGR Valve.

A Study on the Engine Performance and Emission Characteristics in a LP EGR System with Electronic Throttle Control (ETC를 적용한 저압 EGR시스템의 엔진성능 및 배출가스 특성에 관한 연구)

  • Park, Jun-Heuk;Lim, Jong-Han;Yoon, Jun-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.379-387
    • /
    • 2011
  • Research and development of LP EGR system for the performance improvement and emission reduction on diesel engine is proceeding at a good pace. LP EGR system seems to be helpful method to further reduce$NO_x$ emissions while maintaining PM emissions at a low level because the boost pressure is unchanged while varying EGR rate. This study is experimentally conducted on a 2.0L common rail DI engine at the medium load condition (2000 rpm, BMEP 1.0 MPa, boost pressure 181.3 kPa) that difficult to use large amount of EGR gas because of deteriorations of performance and fuel consumption. And we investigated the characteristics of performance and fuel consumption while varying EGR systems. The overall results using LP EGR system equipped with ETC identified benefits on reduction of PM and improvement of fuel consumption and thermal efficiency while keep the $NO_x$ level compared to HP EGR and LP EGR with back pressure valve.

Performance Design of Aluminum EGR Cooler Consisting of Extruded Tubes for LPL EGR System (LPL EGR 시스템용 압출 튜브 구조의 알루미늄 EGR 쿨러 성능 설계)

  • Heo, Hyungseok;Bae, Sukjung;Kang, Taegu;Lee, Junyong;Seo, Hyeongjun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.42-50
    • /
    • 2017
  • A study has been conducted to develop an aluminum EGR cooler for the LPL EGR system of a diesel engine. Aluminum has a much lower density and thermal conductivity that is about 12 times or more than that of stainless steel, so it is advantageous for use in an EGR cooler for weight reduction and cooling performance effects. A design process has been carried out to ensure heat dissipation performance in a restricted space to investigate the geometric parameters and satisfy the requirements for pressure drops at both fluid sides. The tubes of exhaust gas have been designed as extruded tubes. An aluminum EGR cooler consisting of extruded tubes entails a simpler manufacturing process compared to a stainless steel EGR cooler with conventional heat transfer fins. A prototype has been manufactured from the final model selected through the design process. The performance of the aluminum EGR cooler was evaluated and compared with that of the conventional one. The weight of the aluminum EGR cooler is reduced by 22.9%, while performance is significantly improved.

Effect of Recirculated Exhaust Gas Temperature on Performance and Exhaust Emissions in Diesel Engines with Scrubber EGR System (스크러버형 EGR시스템 디젤기관의 성능 및 배기 배출물에 미치는 재순환 배기온도의 영향)

  • 배명환;하태용;류창성;하정호;박재윤
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.75-82
    • /
    • 2002
  • The effects of intake mixture temperature on performance and exhaust emissions under four kinds of engine loads were experimentally investigated by using a four-cycle four-cylinder, swirl chamber type, water-cooled diesel engine with scrubber EGR system operating at three kinds of engine speeds. The purpose of this study is to develop the scrubber exhaust gas recirculation(EGR) control system for reducing $NO_x$ and soot emissions simultaneously in diesel engines. The EGR system is used to reduce NOx emissions. And a novel diesel soot-removal device with a cylinder-type scrubber which has five water injection nozzles is specially designed and manufactured to reduce soot contents in the recirculated exhaust gas to the intake system of the engine. The influences of cooled EGR and water injection, however, would be included within those of scrubber EGR system. In order to study the effect of intake mixture temperature, a intake mixture heating device which has five heating coils is made of a steel drum. It is found that the specific fuel consumption rate is considerably elevated by the increase of intake mixture temperature, and that NOx emissions are markedly decreased as EGR rates are increased and intake mixture temperature is dropped, while soot emissions are increased with increasing EGR rates and intake mixture temperature.

  • PDF

Analysis of Performance Characteristics on Diesel Engine with Aftertreatment and EGR System (후처리 시스템을 장착한 디젤엔진의 EGR 밸브 작동에 따른 성능 분석)

  • Park, Cheol-Woong;Choi, Young;Lim, Gi-Hun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.124-129
    • /
    • 2010
  • The direct injection (DI) diesel engine has become a prime candidate for future transportation needs because of its high thermal efficiency. However, nitrogen oxides (NOx) increase in the local high temperature regions and particulate matter (PM) increases in the diffusion flame region within diesel combustion. Therefore, the demand for developing hybrid system consist of exhaust gas recirculation (EGR) and aftertreatment system as well as diesel particulate filter (DPF) or lean NOx trap (LNT) should be applied. The variation of EGR rate due to the malfunction of EGR valve can affect not only the combustion stability of engine but also the performance of aftertreatment system. In this research, 2.0 liter 4-cylinder turbocharged diesel engine was used to investigate the combustion and emission characteristics for various operating conditions with EGR. While the fuel consumption was increased with increase of EGR rate, NOx emission was improved by maximum 90% at low speed, low load operating condition. To achieve combustion stability and reliability of aftertrearment system with minimum penalty in fuel consumption and emissions, the fault diagnosis of EGR malfunction must be employed.

A Study on the Application of the Built-in EGR System for Diesel Engine (디젤기관의 내장형 EGR시스템 적용 가능성에 관한 연구)

  • 최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.398-404
    • /
    • 1999
  • The EGR is needed for one of various strategies to reduce NOx emission. But to get the proper EGR rate the intake and exhaust system become complicated. That is a reason why we consider using the built0in EGR system. The built-in EGR is a system which reduces Nox by controling the residual gas fraction in cylinder by changing valve timing and valve lift of intake and exhaust. In this paper characteristics of volumetric efficiency and residual gas fraction in cylinder were investigated for various engine speeds by changing valve timing and valve lift of intake and exhaust. In this paper characteristics of volumetric efficiency and residual gas fraction in cylinder were investigated for various engine speeds by changing valve timing and valve lift of intake and exhaust in the 4 stroke-cycle diesel engine. Volumetric efficiency and residual gas fraction were calculated by the method of characteristics. As the results the possibility of suing the built-in EGR system was confirmed.

  • PDF

The Effect of Cooling Efficiency on Fouling by EGR Cooler Internal Shape (EGR Cooler 내부 형상에 따른 Fouling이 냉각 성능에 미치는 영향)

  • Nam, Youn-Woo;Oh, Kwang-Chul;Lee, Chun-Hwan;Lee, Chun-Beom;Lee, Won-Nam
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.101-108
    • /
    • 2011
  • Understanding the exhaust gas recirculation (EGR) cooler fouling in diesel engine is important factor in the durability characteristic of a EGR system. We develope a test rig and PM feeder using carbon black to examine the effect of fouling on EGR cooler devices those were consisted of flat and shell & tube type. The EGR cooler fouling process is a complex interaction involving heat exchanger shape, boundary condition, constitutes, chemistry and operating mode. As the soot deposited to EGR cooler, these formed a thin deposit layer that was less heat exchange than the fresh status of tube enclosing the exhaust gas, resulting in lower heat exchange effectiveness in both type coolers. But these deposits caused different results in pressure drop, it is increased in flat type, but decreased in Shell & tube type of EGR cooler. A cause was estimated from a change of the flow structure and a decrease of contact area as the EGR cooler fouling.

A Fundamental Study of Hybrid Combustion System Applying Exhaust Gas Recirculation (배기가스 재순환을 적용한 하이브리드 연소시스템에 대한 기초 연구)

  • Oh, Wheesung;Yu, Byeonghun;Park, Taejoon;Lee, Chang-Eon
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.100-107
    • /
    • 2016
  • In this study confirmed the reduction effect of pollutant by applying Fi-EGR and FPI-EGR to hybrid combustion system realizing premixed flame and non-premxied flame at once. The results showed that NOx emission index decreased significantly in case of adopting EGR. Additionally, the hybrid combustion system with EGR resulted in a better performance compared to usual non-premixed combustion system such that it can reduce $NO_x$ emission at equivalent EGR ratios. Especially, in the case of 25% of FI-EGR ratio at hybrid combustion system that the ratio of non-premixed and premixed is 50 : 50, NOx emission index reduction rate was about 59% compared to $NO_x$ emission of non-premixed combustion system without EGR and in the case of 15% of FPI-EGR ratio at hybrid combustion system that the ratio of non-premixed and premixed is 70 : 30, $NO_x$ emission index reduction rate was about 48% compared to $NO_x$ emission of hybrid combustion system without EGR.

Study on Low Pressure Loop EGR System for Heavy-duty Diesel Engine to Meet EURO-5 NOx Regulation (LPL EGR System 적용 대형 디젤엔진의 EURO-5 NOx 규제대응에 관한 연구)

  • Lee, K.S.;Baek, M.Y.;Park, H.B.
    • Journal of Power System Engineering
    • /
    • v.11 no.4
    • /
    • pp.12-17
    • /
    • 2007
  • Recently, many small and medium size diesel vehicles have been equipped with turbocharger and EGR system to get high performance and reduce $NO_x$ emissions but its application to heavy-duty diesel engine is not common yet. In this work, the simulation model for EURO-3 engine was developed using WAVE and then its performance and emission level were verified by comparing with experimental results. The possibility of current EURO-3 engine equipped with LPL EGR system which would be satisfied the EURO-5 regulation are examined. ESC 13 mode was chosen as the primary engine test mode, and the injection timing and fuel quantity were changed to compensate the lost engine performance caused by EGR. The system developed in this study shows that the current EURO-3 engine could satisfy EURO-5 $NO_x$ regulation by applying LPL EGR.

  • PDF

A Study on Thermal and Modal Characteristics for EGR System with Dimpled Rectangular Tube (딤플 사각 튜브형 배기 가스 재순환 시스템의 열 및 진동 특성에 관한 연구)

  • Seo, Young-Ho;Heo, Sung-Chan;Kwon, Young-Seok;Ku, Tae-Wan;Kim, Jeong;Kang, Beom-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.115-125
    • /
    • 2008
  • Recently, Exhaust Gas Recirculation (EGR) system which re-flow a cooled exhaust gas from vehicles burning diesel as fuel to a combustion chamber of engine has been used to solve the serious air pollution. For the design and mass production of EGR system, it is essential to ensure structural integrity evaluation. The EGR system consisted of ten dimpled oval core rectangular tubes, two fix-plates, two coolant pipes, shell body and two flanges in this study. To confirm the safety of the designed system, finite element modeling about each component such as the dimpled oval core tube with the dimpled shape and others was carried out. The reliability of EGR system against exhaust gas flow with high temperature was investigated by flow and pressure analysis in the system. Also, thermal and strength analysis were verified the safety of EGR system against temperature change in the shell and tubes. Furthermore, modal analysis using ANSYS was also performed. From the results of FE analysis, there were confirmed that EGR system was safe against the flow of exhaust gas, temperature change in EGR system and vibration on operation condition, respectively.