• 제목/요약/키워드: EGR(exhaust gas recirculation)

검색결과 198건 처리시간 0.024초

간접분사식 디젤기관에서 Mono-Ether 계열 함산소연료(Ethylene Glycol Mono-n-Butyl Ether)의 적용에 관한 연구 (A Study on Application of Mono-Ether Group(Ethylene Glycol Mono-n-Butyl Ether) Oxygenated Fuel in an IDI Diesel Engine)

  • 최승훈;오영택
    • 동력기계공학회지
    • /
    • 제9권3호
    • /
    • pp.15-20
    • /
    • 2005
  • In this paper, the effect of oxygen component in fuel on the exhaust emissions has been investigated for an indirect injection diesel engine. It was tested to estimate change of engine performance and exhaust emission characteristics for the commercial diesel fuel and oxygenated blended fuel which has four kinds of mixed ratio. And, the effects of exhaust gas recirculation(EGR) on the characteristics of NOx emission have been investigated. Ethylene glycol mono-n-butyl ether(EGBE) contains oxygen component 27% in itself, and it is a kind of effective oxygenated fuel of mono-ether group that the smoke emission of EGBE is reduced remarkably compared with commercial diesel fuel, that is, it can supply oxygen component sufficiently at higher loads and speeds in diesel engine. It was found that simultaneous reduction of smoke and NOx was achieved with oxygenated fuel(10vol-%) and cooled EGR method(10%).

  • PDF

CHARACTERISTICS OF PERFORMANCE AND EXHAUST EMISSION OF DIESEL ENGINES BY CHANGES IN FUEL PROPERTIES AND APPLICATION OF EGR

  • Choi, S.H.;Oh, Y.T.
    • International Journal of Automotive Technology
    • /
    • 제8권2호
    • /
    • pp.179-184
    • /
    • 2007
  • In this study, the potential use of oxygenated fuels such as ethylene glycol mono-normal butyl ether (EGBE) was investigated in an attempt to reduce the emission of exhaust smoke from diesel engines. Effects of the combustion method on exhaust emission of DI and IDI diesel engines were also examined. Since EGBE is composed of approximately 27.1% oxygen, this is one of several potential oxygenated fuels that could reduce the smoke content of exhaust gas. EGBE blended fuels have been proven to reduce smoke emission remarkably compared to the conventional commercial fuels. The test was conducted with single and four cylinder, four stroke, DI and IDI diesel engines. The study showed that a simultaneous reduction of smoke and NOx emission could be achieved by the combination of oxygenated blend fuels and the cooled EGR method in both DI and IDI diesel engines. It was also found that a reduction rate of exhaust emission in a DI engine was larger than an IDI diesel engine.

QFT 기법을 이용한 승용디젤엔진 공연비 제어 알고리즘 설계 연구 (Robust Air-to-fuel Ratio Control Algorithm of Passenger Car Diesel Engines Using Quantitative Feedback Theory)

  • 박인석;홍승우;신재욱;선우명호
    • 한국자동차공학회논문집
    • /
    • 제21권3호
    • /
    • pp.88-97
    • /
    • 2013
  • This paper presents a robust air-to-fuel ratio (AFR) control algorithm for managing exhaust gas recirculation (EGR) systems. In order to handle production tolerance, deterioration and parameter-varying characteristics of the EGR system, quantitative feedback theory (QFT) is applied for designing the robust AFR control algorithm. A plant model of EGR system is approximated by the first order transfer function plus time-delay (FOPTD) model. EGR valve position and AFR of exhaust gas are used as input/output variables of the plant model. Through engine experiments, parameter uncertainty of the plant model is identified in a fixed engine operating point. Requirement specifications of robust stability and reference tracking performance are defined and these are fulfilled by the following steps: during loop shaping process, a PID controller is designed by using a nominal loop transmission function represented on Nichols chart. Then, the frequency response of closed-loop transfer function is used for designing a prefilter. It is validated that the proposed QFT-based AFR control algorithm successfully satisfy the requirements through experiments of various engine operating points.

압축착화 디젤엔진의 모사 EGR 시스템에 의한 소음 특성 변화 분석 (Study on Noise Generation Characteristics of Simulated EGR System for Compression Ignition Diesel Engine)

  • 박범;윤성준;박성욱;박준홍
    • 한국분무공학회지
    • /
    • 제19권4호
    • /
    • pp.204-210
    • /
    • 2014
  • Experimental study was conducted to investigate the effect of EGR(exhaust gas recirculation) on engine noise using single cylinder combustion ignition engine. Under constant engine rotary speed of 1200 RPM, 8 mg fuel quantity was injected with 15, 18 and 21% of oxygen ratio and 1400 bar of injection pressure. Using the in-cylinder pressure data acquired by a piezoelectric transducer, the engine performance parameters were calculated. Radiated engine noise measured for 10 seconds was analyzed using spectral characteristics and sound quality metrics such as loudness, sharpness, roughness. From the obtained engine performance parameters and sound quality metrics, effect of oxygen ratio of the premixed air, start of injection timing on frequency characteristic and sound quality metrics were analyzed. Correlation analysis was conducted between MPRR(maximum pressure rise rate), RI(ringing intensity) and sound quality metrics. RI was identified as the most important factor having influence on the sound quality metrics.

균질혼합압축점화기관에서 프로판과 부탄연료가 기관성능에 미치는 영향 (Influence of Propane and Butane on Engine Performance in a Homogeneous Charge Compression Ignition(HCCI) Engine)

  • 최경호;김지문;한성빈
    • 대한기계학회논문집B
    • /
    • 제29권3호
    • /
    • pp.417-423
    • /
    • 2005
  • This paper describes the engine performance of a Homogeneous Charge Compression Ignition(HCCI) engine according to Exhaust Gas Recirculation(EGR), cylinder-to-cylinder, fuel of propane and butane. HCCI engines are being considered as a future alternative for diesel and gasoline engines. HCCI engines have the potential for high efficiency, very low NOx emissions and very low particulate matter(PM). On experimental work, we have done an evaluation of operating conditions in a 4-cylinder compression engine. The engine has been run with propane and butane fuels at a constant speed of 1800rpm. This work is intended to investigate the HCCI operation of the engine in this configuration that has been modified from the base diesel engine. The performance and emissions of the engine are presented. In this paper, the start of combustion(SOC) is defined as the $50{\%}$ point of the peak rate of heat release. SOC is delayed slightly with increasing EGR. As expected, NOx emissions were very low for all EGR range and nbuned HC and CO emission levels were high. CO and HC emissions are lower with using propane than butane as fuels of HCCI engines.

저압 EGR을 적용한 디젤엔진의 희석비에 따른 연소 특성 비교 (Comparison of Combustion Characteristics On the Basis of the Dilution Ratio in Diesel Engines with LPL EGR)

  • 임기훈;박준혁;최영;이선엽;김영민
    • 대한기계학회논문집B
    • /
    • 제35권5호
    • /
    • pp.525-531
    • /
    • 2011
  • 디젤엔진에서 배기가스 재순환(EGR; Exhaust Gas Recirculation)은 선택적 환원 촉매나 $NO_x$ 흡장 촉 매에 비해 $NO_x$ 배출 저감을 위한 가장 효과적인 기술이다. 점점 더 강화되어 가는 $NO_x$ 배출 규제를 만족시키기 위해서는 많은 양의 EGR 가스 공급이 필요하다. 저압 EGR은 일정한 과급 압력에서 가변형상 터보차져의 제어와 거의 독립적이기 때문에 EGR 공급 측면에서 보면 저압 EGR이 기존의 고압 EGR에 비해서 더 많은 장점을 갖는다. 본 연구에서는 저압 EGR이 연소 특성에 미치는 영향을 고압 EGR을 적용했을 때와 비교하였다. 각 EGR 루프에 대해 혼합기의 희석 정도에 따른 영향을 분석하기 위해 독립변수로써 희석비를 사용하였다. 저압 EGR을 적용하였을 때, 고압 EGR을 적용했을 때와 동등한 $NO_x$ 배출량을 유지하면서 연료 소비율과 매연 배출은 고압 EGR의 경우보다 좀 더 낮은 결과를 보였다.

적층형 EGR Cooler의 Pitch 길이 변화가 열교환 특성에 미치는 영향 (Effects of Pitch Length of Stack-type EGR Cooler on Heat Exchange Characteristics in a Diesel Engine)

  • 황세준;김민철;장상훈;김형만
    • 한국자동차공학회논문집
    • /
    • 제18권2호
    • /
    • pp.135-140
    • /
    • 2010
  • An important goal in diesel engine research is the development of a means to reduce the emissions of nitrogen oxides (NOX). The use of a cooled exhaust gas recirculation (EGR) system is one of the most effective techniques currently available for reducing nitrogen oxides. Since Particular Matter (PM) fouling reduces the efficiency of an EGR cooler, a trade-off exists between the amount of NOX and PM emissions, especially at high engine loads. In the present study, engine dynamometer experiments have been performed to investigate the heat exchange characteristics of the stack-type EGR coolers with wave fin pitches of 3.6 and 4.6 mm. The results show that the heat exchange effectiveness is decreased as surface area decrease with pitch of 4.6 mm due to PM fouling. As surface area increase at pitch of 3.6 mm, super-cooling happens in the recirculated exhaust gas.

The Combustion and Exhasut Emission Characteristics on the Low-temperature Combustion of Biodiesel Fuel in a DI Diesel Engine

  • Yoon, Seung Hyun
    • 한국분무공학회지
    • /
    • 제22권4호
    • /
    • pp.197-202
    • /
    • 2017
  • The objective of this study is to investigate the effects of low-temperature combustion (LTC) on the correlations of combustion characteristics and reduction of exhaust emissions in a small DI diesel engine with biodiesel fuel. In order to analyze the combustion, exhaust emission characteristics and distribution of nano size particles for biodiesel were investigated. In addition, to evaluate the effect of LTC on the combustion and emission characteristics, 30 and 50% of cooled-EGR rates were investigated. From these results, it revealed that the influence of LTC on the combustion characteristics showed that the ignition delay significantly increased and reduces peak heat release rate of premixed combustion by lowering reaction rate. With 50% EGR and advanced injection timing, soot and $NO_x$ emissions were simultaneously reduced.

디젤엔진 자동차의 EGR 및 공기 제어와 CPF 장치에 관련된 고장사례 고찰 (A Study for Failure Examples of Emission Gas Recirculation and Air Control and Catalyzed Particulate Filter System in Diesel Engine Vehicle)

  • 이일권;국창호;함성훈;이영숙;염광욱;유창배;김성모;임하영;안호철;이정호
    • 한국가스학회지
    • /
    • 제22권2호
    • /
    • pp.78-83
    • /
    • 2018
  • 이 논문은 디젤엔진 자동차의 EGR 및 공기 제어와 CPF 장치에 관련된 고장사례 연구이다. 첫 번째 사례는 엔진진공펌프 손상으로 인해 엔진오일이 EGR 밸브 내부 다이어프램 손상으로 인해 오일이 흡기로 유입되어 연소실로 들어가 불완전 연소함으로써 배기할 때 매연이 발생된 것으로 확인되었다. 두 번째 사례의 원인은 공기제어 장치인 스로틀 플랩(throttle flap)을 점검하였을 때 스로틀 플랩이 고착되어 흡입공기량 부족에 의해 매연이 발생된 것을 확인하였다. 세 번째 사례는, 배기가스 온도센서의 불량으로 인해 온도를 감지하지 못해 재생기능이 되지 않아 매연이 발생된 것으로 확인되었다. 따라서, 배기가스발생으로 인한 환경오염 문제가 발생하지 않도록 최적의 상태를 유지하도록 관리하여야 한다.

과급을 이용한 저온 디젤 연소의 운전영역 확장 및 배기 배출물 저감 (Expansion of Operating Range and Reduction of Engine out Emission in Low Temperature Diesel Combustion with Boosting)

  • 심의준;한상욱;장진영;박정서;배충식
    • 한국자동차공학회논문집
    • /
    • 제17권5호
    • /
    • pp.31-38
    • /
    • 2009
  • Supercharging system was adopted to investigate the influence of boost pressure on operating range and exhaust emissions by using a supercharger at low temperature diesel combustion (LTC) condition in a 5-cylinder 2.7 L direct injection diesel engine. The experimental parameters such as injection quantity, injection timing, injection pressure and exhaust gas recirculation (EGR) rate were varied to find maximum operating range in LTC condition. As a result of adopting increased boost pressure in LTC, wider operating range was achieved compared with naturally aspirated condition due to increased mixing intensity. Increased boost pressure resulted in lower hydrocarbon (HC) and carbon monoxide (CO) emissions due to increased swirl rate and mixing intensity, which induced complete combustion. Moreover, increased boost pressure in LTC resulted in much lower soot emissions compared with high speed direct injection (HSDI) condition.