• Title/Summary/Keyword: EGFR inhibitors

Search Result 60, Processing Time 0.027 seconds

What's New in Molecular Targeted Therapies for Head and Neck Cancer? (두경부암의 최신 표적치료)

  • Lee, Seoyoung;Kim, Hye Ryun
    • Korean Journal of Head & Neck Oncology
    • /
    • v.37 no.2
    • /
    • pp.11-17
    • /
    • 2021
  • Head and neck cancer is the 6th most frequently diagnosed solid tumor in the world. Alcohol consumption, smoking, and HPV infection are associated with the incidence of head and neck squamous cell carcinoma (HNSCC). Although a multidisciplinary approach is a key strategy for the treatment of locally advanced HNSCC, systemic therapy is the mainstream of recurrent or metastatic HNSCC treatment. Stage IV HNSCC has a relatively poor prognosis with median overall survival of around one year. There have been many clinical trials to investigate the efficacy of target agents in the treatment of HNSCC. In the HPV-negative HNSCC, TP53 and CDKN2A are the most commonly mutated genes. In the HPV-positive HNSCC, the PI3K pathway is frequently altered. EGFR, PI3K, cell cycle pathway, MET, HRAS, and IL6/JAK/STAT pathway are explored targets in HNSCC. In this study, we review the target pathways and agents under research. We also introduce here umbrella trials of recurrent or metastatic HNSCC conducted by the Korea Cancer Study Group. The combination of target agents with immune checkpoint inhibitors or cytotoxic chemotherapies would be a future step in the precision medicine of HNSCC treatment.

The Modulation of Radiosensitivity by Combined Treatment of Selective COX-2 Inhibitor, NS 398 and EGF Receptor Blocker AG 1478 in HeLa Cell Line (선택적 COX-2 억제제 NS 398과 EGF 수용체 차단제 AG 1478의 복합투여가 HeLa 세포주의 방사선 감수성에 미치는 영향)

  • Youn Seon Min;Oh Young Kee;Kim Joo Heon;Park Mi Ja;Seong In Ock;Kang Kimun;Chai Gyuyong
    • Radiation Oncology Journal
    • /
    • v.23 no.1
    • /
    • pp.51-60
    • /
    • 2005
  • Purpose : Selective inhibition of multiple molecular targets may improve the antitumor activity of radiation. Two specific inhibitors of selective cyclooxygenase-2 (COX-2) and epidermal growth factor receptor (EGFR) were combined with radiation on the HeLa cell line. To investigate cooperative mechanism with selective COX-2 inhibitor and EGFR blocker, in vitro experiments were done. Materials and Methods : Antitumor effect was obtained by growth inhibition and apoptosis analysis by annexin V-Flous method. Radiation modulation effects were determined by the clonogenic cell survival assay. Surviving fractions at 2 Gy ($SF_2$) and dose enhancement ratio at a surviving fraction of 0.25 were evaluated. To investigate the mechanism of the modulation of radiosensitivity, the cell cycle analyses were done by flow cytometry. The bcl-2 and bax expressions were analyzed by western blot. Results : A cooperative effect were observed on the apoptosis of the HeLa ceil line when combination of the two drugs, AG 1478 and NS 398 with radiation at the lowest doses, apoptosis of $22.70\%$ compare with combination of the one drug with radiation, apoptosis of $8.49\%$. In cell cycle analysis, accumulation of cell on $G_0/G_l$ phase and decrement of S phase fraction was observed from 24 hours to 72 hours after treatment with radiation, AG 1478 and NS 398. The combination of NS 398 and AG 1478 enhanced radiosensitivity on a concentration-dependent manner in HeLa cells with dose enhancement ratios of 3.00 and $SF_2$ of 0.12 but the combination of one drug with radiation was not enhanced radlosensitivity with dose enhancement ratios of 1.12 and SF2 of 0.68 (p=0.005). The expression levels of bcl-2 and bax were reduced when combined with AG 1478 and NS 398. Conclusion : Our results indicate that the selective COX-2 inhibitor and EGFR blocker combined with radiation have potential additive or cooperative effects on radiation treatment and may act through various mechanisms including direct inhibition of tumor cell proliferation, suppression of tumor cell cycle progression and inhibition of anti-apoptotic proteins.

Suppressors for Human Epidermal Growth Factor Receptor 2/4 (HER2/4): A New Family of Anti-Toxoplasmic Agents in ARPE-19 Cells

  • Kim, Yeong Hoon;Bhatt, Lokraj;Ahn, Hye-Jin;Yang, Zhaoshou;Lee, Won-Kyu;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.5
    • /
    • pp.491-503
    • /
    • 2017
  • The effects of tyrosine kinase inhibitors (TKIs) were evaluated on growth inhibition of intracellular Toxoplasma gondii in host ARPE-19 cells. The number of tachyzoites per parasitophorous vacuolar membrane (PVM) was counted after treatment with TKIs. T. gondii protein expression was assessed by western blot. Immunofluorescence assay was performed using Programmed Cell Death 4 (PDCD4) and T. gondii GRA3 antibodies. The TKIs were divided into 3 groups; non-epidermal growth factor receptor (non-EGFR), anti-human EGFR 2 (anti-HER2), and anti-HER2/4 TKIs, respectively. Group I TKIs (nintedanib, AZD9291, and sunitinib) were unable to inhibit proliferation without destroying host cells. Group II TKIs (lapatinib, gefitinib, erlotinib, and AG1478) inhibited proliferation up to 98% equivalent to control pyrimethamine ($5{\mu}M$) at $20{\mu}M$ and higher, without affecting host cells. Group III TKIs (neratinib, dacomitinib, afatinib, and pelitinib) inhibited proliferation up to 98% equivalent to pyrimethamine at $1-5{\mu}M$, but host cells were destroyed at $10-20{\mu}M$. In Group I, TgHSP90 and SAG1 inhibitions were weak, and GRA3 expression was moderately inhibited. In Group II, TgHSP90 and SAG1 expressions seemed to be slightly enhanced, while GRA3 showed none to mild inhibition; however, AG1478 inhibited all proteins moderately. Protein expression was blocked in Group III, comparable to pyrimethamine. PDCD4 and GRA3 were well localized inside the nuclei in Group I, mildly disrupted in Group II, and were completely disrupted in Group III. This study suggests the possibility of a vital T. gondii TK having potential HER2/4 properties, thus anti-HER2/4 TKIs may inhibit intracellular parasite proliferation with minimal adverse effects on host cells.

Early or Late Gefitinib, Which is Better for Survival? - Retrospective Analysis of 228 Korean Patients with Advanced or Metastatic NSCLC

  • Kim, Dong-Gun;Kim, Min-Kyoung;Bae, Sung-Hwa;Koh, Sung-Ae;Park, Sung-Woo;Kim, Hyun-Je;Kim, Myung-Jin;Jang, Hyo-Jin;Lee, Kyung-Hee;Lee, Kwan-Ho;Chung, Jin-Hong;Shin, Kyung-Chul;Ryoo, Hun-Mo;Hyun, Myung-Soo
    • Journal of Yeungnam Medical Science
    • /
    • v.28 no.1
    • /
    • pp.31-44
    • /
    • 2011
  • Background: The optimal timing of treatment with EGFR-tyrosine kinase inhibitors (EGFR-TKI) in NSCLC patients has not yet been determined. Methods: We separated 228 patients with advanced /metastatic NSCLC treated with gefitinib into an early gefitinib group (patients who received gefitinib as first- or second-line treatment) and a delayed gefitinib group (patients who received gefitinib as third or fourth-line treatment) and attempted to determine whether the timing of gefitinib treatment affected clinical outcomes. Results: Median overall survival (OS), progression free survival (PFS), and median OS from first-line treatment of advanced/metastatic disease (OSt) for 111 patients in the early gefitinib group were 6.2 months, 3.3 months, and 11.6 months. However, median OS, PFS, and OSt for 84 patients in the delayed gefitinib group were 7.8 months, 2.3 months, and 22.7 months. No differences in OS and PFS were observed between the 2 groups. However, OSt was significantly longer in the delayed gefitnib group. Timing of gefitinib therapy was one of the independent predictors of OSt. Hb ${\geq}$ 10 g/dl, and having never smoked, and ECOG performance status ${\leq}1$ were independent predictors of better PFS. Conclusion:Deferral of gefitinib therapy in patientswith advanced ormetastatic NSCLC may be preferable if they are able to tolerate chemotherapy.

  • PDF

Low-Dose Radiation Stimulates the Proliferation of Normal Human Lung Fibroblasts Via a Transient Activation of Raf and Akt

  • Kim, Cha Soon;Kim, Jin Kyoung;Nam, Seon Young;Yang, Kwang Hee;Jeong, Meeseon;Kim, Hee Sun;Kim, Chong Soon;Jin, Young-Woo;Kim, Joon
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.424-430
    • /
    • 2007
  • The biological effects of low-dose radiation have been investigated and debated for more than a century, but its cellular effects and regulatory mechanisms remain poorly understood. This study shows the human cellular responses to low-dose radiation in CCD-18 Lu cells, which are derived from normal human lung fibroblasts. We examined a colony-forming assay for cell survival by ionizing radiation. Live cell counting and cell cycle analysis were measured for cell proliferation and cell cycle progression following low-dose irradiation. We examined Raf and Akt phosphorylation to determine the proliferation mechanism resulting from low-dose radiation. We also observed that p53 and p21 were related to cell cycle response. We found that 0.05 Gy of ionizing radiation enhanced cell proliferation and did not change the progression of the cell cycle. In addition, 0.05 Gy of ionizing radiation transiently activated Raf and Akt, but did not change phospho-p53, p53 and p21 in CCD-18 Lu cells. However, 2 Gy of ionizing radiation induced cell cycle arrest, phosphorylation of p53, and expression of p53 and p21. The phosphorylation of Raf and Akt proteins induced by 0.05 Gy of ionizing radiation was abolished by pre-treatment with an EGFR inhibitor, AG1478, or a PI3k inhibitor, LY294002. Cell proliferation stimulated by 0.05 Gy of ionizing radiation was blocked by the suppression of Raf and Akt phosphorylation with these inhibitors. These results suggest that 0.05 Gy of ionizing radiation stimulates cell proliferation through the transient activation of Raf and Akt in CCD-18 Lu cells.

Genetic Characterization of Molecular Targets in Korean Patients with Gastrointestinal Stromal Tumors

  • Park, Joonhong;Yoo, Han Mo;Sul, Hae Jung;Shin, Soyoung;Lee, Seung Woo;Kim, Jeong Goo
    • Journal of Gastric Cancer
    • /
    • v.20 no.1
    • /
    • pp.29-40
    • /
    • 2020
  • Purpose: Gastrointestinal stromal tumors (GISTs) frequently harbor activating gene mutations in either KIT or platelet-derived growth factor receptor A (PDGFRA) and are highly responsive to several selective tyrosine kinase inhibitors. In this study, a targeted next-generation sequencing (NGS) assay with an Oncomine Focus Assay (OFA) panel was used for the genetic characterization of molecular targets in 30 Korean patients with GIST. Materials and Methods: Using the OFA that enables rapid and simultaneous detection of hotspots, single nucleotide variants (SNVs), insertion and deletions (Indels), copy number variants (CNVs), and gene fusions across 52 genes relevant to solid tumors, targeted NGS was performed using genomic DNA extracted from formalin-fixed and paraffin-embedded samples of 30 GISTs. Results: Forty-three hotspot/other likely pathogenic variants (33 SNVs, 8 Indels, and 2 amplifications) in 16 genes were identified in 26 of the 30 GISTs. KIT variants were most frequent (44%, 19/43), followed by 6 variants in PIK3CA, 3 in PDGFRA, 2 each in JAK1 and EGFR, and 1 each in AKT1, ALK, CCND1, CTNNB1, FGFR3, FGFR4, GNA11, GNAQ, JAK3, MET, and SMO. Based on the mutation types, majority of the variants carried missense mutations (60%, 26/43), followed by 8 frameshifts, 6 nonsense, 1 stop-loss, and 2 amplifications. Conclusions: Our study confirmed the advantage of using targeted NGS with a cancer gene panel to efficiently identify mutations associated with GISTs. These findings may provide a molecular genetic basis for developing new drugs targeting these gene mutations for GIST therapy.

Development of ELISA System for Screening of Specific Binding Inhibitors for Src Homology (SH)2 Domain and Phosphotyrosine Interactions

  • Lee, Sang-Seop;Lee, Kyung-Im;Yoo, Ji-Yun;Jeong, Moon-Jin;Park, Young-Mee;Kwon, Byoung-Mog;Bae, Yun-Soo;Han, Mi-Young
    • BMB Reports
    • /
    • v.34 no.6
    • /
    • pp.537-543
    • /
    • 2001
  • In the present study, an in vitro ELISA system to assess the interaction between Src homology (SH)2 domains and phosphotyrosine that contain peptides was established using purified GST-conjugated SH2 proteins and synthetic biotinylated phosphotyrosine that contain oligopeptides. The SH2 domains bound the relevant phosphopeptides that were immobilized in the streptavidin-coated microtiter plate in a highly specific and dose-dependent manner. The epidermal growth factor receptor (EGFR)-, T antigen (T Ag)-, and platelet-derived growth factor receptor (PDGFR)-derived phosphopeptides interacted with the growth factor receptor binding protein (Grb)2/SH2, Lck/SH2, and phosphatidyl inositol 3-kinase (PI3K) p85/SH2, respectively. No cross-reactions were observed. Competitive inhibition experiments showed that a short phosphopeptide of only four amino acids was long enough to determine the binding specificity. Optimal concentrations of the GST-SH2 fusion protein and phosphopeptide in this new ELISA system for screening the binding blockers were chosen at 2nM and 500nM, respectively. When two candidate compounds were tested in our ELISA system, they specifically inhibited the Lck/SH2 and/or p85/SH2 binding to the relevant phosphopeptides. Our results indicate that this ELISA system could be used as an easy screening method for the discovery of specific binding blockers of protein-protein interactions via SH2 domains.

  • PDF

The role of p21/CIP1/WAF1 (p21) in the negative regulation of the growth hormone/growth hormone receptor and epidermal growth factor/epidermal growth factor receptor pathways, in growth hormone transduction defect

  • Kostopoulou, Eirini;Gil, Andrea Paola Rojas;Spiliotis, Bessie E.
    • Annals of Pediatric Endocrinology and Metabolism
    • /
    • v.23 no.4
    • /
    • pp.204-209
    • /
    • 2018
  • Purpose: Growth hormone transduction defect (GHTD) is characterized by severe short stature, impaired STAT3 (signal transducer and activator of transcription-3) phosphorylation and overexpression of the cytokine inducible SH2 containing protein (CIS) and p21/CIP1/WAF1. To investigate the role of p21/CIP1/WAF1 in the negative regulation of the growth hormone (GH)/GH receptor and Epidermal Growth Factor (EGF)/EGF Receptor pathways in GHTD. Methods: Fibroblast cultures were developed from gingival biopsies of 1 GHTD patient and 1 control. The protein expression and the cellular localization of p21/CIP1/WAF1 was studied by Western immunoblotting and immunofluorescence, respectively: at the basal state and after induction with $200-{\mu}g/L$ human GH (hGH) (GH200), either with or without siRNA CIS (siCIS); at the basal state and after inductions with $200-{\mu}g/L$ hGH (GH200), $1,000-{\mu}g/L$ hGH (GH1000) or 50-ng/mL EGF. Results: After GH200/siCIS, the protein expression and nuclear localization of p21 were reduced in the patient. After successful induction of GH signaling (control, GH200; patient, GH1000), the protein expression and nuclear localization of p21 were reduced. After induction with EGF, p21 translocated to the cytoplasm in the control, whereas in the GHTD patient it remained located in the nucleus. Conclusion: In the GHTD fibroblasts, when CIS is reduced, either after siCIS or after a higher dose of hGH (GH1000), p21's antiproliferative effect (nuclear localization) is also reduced and GH signaling is activated. There also appears to be a positive relationship between the 2 inhibitors of GH signaling, CIS and p21. Finally, in GHTD, p21 seems to participate in the regulation of both the GH and EGF/EGFR pathways, depending upon its cellular location.

Translocalization of enhanced PKM2 protein into the nucleus induced by cancer upregulated gene 2 confers cancer stem cell-like phenotypes

  • Yawut, Natpaphan;Kaowinn, Sirichat;Cho, Il-Rae;Budluang, Phatcharaporn;Kim, Seonghye;Kim, Suhkmann;Youn, So Eun;Koh, Sang Seok;Chung, Young-Hwa
    • BMB Reports
    • /
    • v.55 no.2
    • /
    • pp.98-103
    • /
    • 2022
  • Increased mRNA levels of cancer upregulated gene (CUG)2 have been detected in many different tumor tissues using Affymetrix microarray. Oncogenic capability of the CUG2 gene has been further reported. However, the mechanism by which CUG2 overexpression promotes cancer stem cell (CSC)-like phenotypes remains unknown. With recent studies showing that pyruvate kinase muscle 2 (PKM2) is overexpressed in clinical tissues from gastric, lung, and cervical cancer patients, we hypothesized that PKM2 might play an important role in CSC-like phenotypes caused by CUG2 overexpression. The present study revealed that PKM2 protein levels and translocation of PKM2 into the nucleus were enhanced in CUG2-overexpressing lung carcinoma A549 and immortalized bronchial BEAS-2B cells than in control cells. Expression levels of c-Myc, CyclinD1, and PKM2 were increased in CUG2-overexpressing cells than in control cells. Furthermore, EGFR and ERK inhibitors as well as suppression of Yap1 and NEK2 expression reduced PKM2 protein levels. Interestingly, knockdown of β-catenin expression failed to reduce PKM2 protein levels. Furthermore, reduction of PKM2 expression with its siRNA hindered CSC-like phenotypes such as faster wound healing, aggressive transwell migration, and increased size/number of sphere formation. The introduction of mutant S37A PKM2-green fluorescence protein (GFP) into cells without ability to move to the nucleus did not confer CSC-like phenotypes, whereas forced expression of wild-type PKM2 promoted such phenotypes. Overall, CUG2-induced increase in the expression of nuclear PKM2 contributes to CSC-like phenotypes by upregulating c-Myc and CyclinD1 as a co-activator.

Muc5ac Gene Expression Induced by Cigarette Smoke is Mediated Via a Pathway Involving ERK1/2 and p38 MAPK (담배 연기에 의한 Muc5ac 유전자 발현에 관여하는 세포 내 신호 전달 경로로서의 ERK1/2와 p38 MAPK)

  • Kim, Yong Hyun;Yoon, Hyoung Kyu;Kim, Chi Hong;Ahn, Joong Hyun;Kwon, Soon Seog;Kim, Young Kyoon;Kim, Kwan Hyoung;Moon, Hwa Sik;Park, Sung Hak;Song, Jeong Sup;Cho, Kyung Sook
    • Tuberculosis and Respiratory Diseases
    • /
    • v.58 no.6
    • /
    • pp.590-599
    • /
    • 2005
  • Object : Cigarette smoking is a major cause of mucus hypersecretion, which is a pathophysiological feature of many inflammatory airway diseases. Mucins, which are an important part of the airway mucus, are synthesized from the Muc gene in airway epithelial cells. However, the signaling pathways for cigarette smoke-induced mucin synthesis are unknown. The aim of this study was to determine the signal pathway for smoking induced Muc5ac gene expression. Methods : A549 cells were cultured and transiently transfected with the Muc5ac promoter fragment. These cells were stimulated with 5% cigarette smoke extract (CSE) alone or with CSE after a pretreatment with various signal transduction pathway inhibitors (AG1478, PD98059 and SB203580). The Muc5ac promoter activity was examined using the luciferase reporter system, and the level of phosphorylated EGFR, ERK1/2, p38 MAPK and JNK were all examined using Western blot analysis. Muc5ac mRNA expression was also examined using reverse transcriptase polymerase chain reactions (RT-PCR). Results : 1. The peak level of luciferase activity of the Muc5ac promoter was observed at 5% concentration and after 3 hours of incubation with the CSE. The level of EGFR phosphorylation and the luciferase activity of the transfected cells caused by the CSE were significantly suppressed by AG1478 or PD98059 (P<0.01). 2. CSE phosphorylated ERK1/2 or p38 MAPK but not JNK. The Muc5ac mRNA expression level was increased by the CSE but that was suppressed by PD98059 or AG1478. 3. The CSE-induced phosphorylation of ERK1/2 was blocked by PD98059 and that of p38 MAPK was blocked by either PD98059 or SB203580. Either PD98059 or SB203580 suppressed the luciferase activity of the transfected cells (P<0.0001). Conclusion : The Muc5ac mRNA expression level was increased by the CSE. The increased CSE-induced transcriptional activity was mediated via EGF receptor activation, which led to ERK1/2 and p38 MAPK phosphorylation.