• Title/Summary/Keyword: EGARCH Model

Search Result 45, Processing Time 0.022 seconds

Information Flow Effect Between the Stock Market and Bond Market (주식시장과 채권시장간의 정보 이전효과)

  • Choi, Cha-Soon
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.3
    • /
    • pp.67-75
    • /
    • 2020
  • This paper investigated the information spillover effect between stock market and bond market with the KOSPI daily index and MMF yield data. The overall analysis period is from May 2, 1997 to August 30, 2019. The empirical analysis was conducted by dividing the period from May 2, 1997 to December 30, 2008 before the global financial crisis, and from December 30, 2008 to August 30, 2019 after the global financial crisis, and the overall analysis period. The analysis shows that the EGARCH model considering asymmetric variability is suitable. The price spillover effect and volatility spillover effect existed in both directions between the stock market and the bond market, and the price transfer effect was greater in the period before the global financial crisis than in the period after the global financial crisis. Asymmetric volatility in information between stock and bond markets appears to exist in both markets.

An Analysis of the Co-Movement Effect of Korean, Chinese, Japanese and US Stock Markets: Focus on Global Financial Crisis (한국·중국·일본·미국 주식시장 간 동조화 현상: 글로벌 금융위기 전·후를 중심)

  • Choi, Sung-Uk;Kang, Sang Hoon
    • International Area Studies Review
    • /
    • v.18 no.3
    • /
    • pp.67-88
    • /
    • 2014
  • The Chinese stock market has increasingly strengthened its market power on other stock markets due to rapid growth of its economy. In this context, this study investigated return spillover effect as well as asymmetric volatility spillover effect using a VAR-Bivariate EGARCH model among stock markets(China, US, Japan, Korea). Furthermore, we conjectured the impact of 2008 global financial crisis on the spillover effect of the Chinese stock market. In our empirical results, the Chinese stock market has a weak return spillover effect to other markets(US, Japan, Korea), but after the global financial crisis, its return spillover effect becomes stronger among other stock markets. In addition, the Chinese stock market have strengthened its asymmetric volatility spillover effect on other stock markets after the Global financial crisis. As a result, the Chinese stock market has an strong influence on other stock markets.

A Study on the Impact of Oil Price Volatility on Korean Macro Economic Activities : An EGARCH and VECM Approach (국제유가의 변동성이 한국 거시경제에 미치는 영향 분석 : EGARCH 및 VECM 모형의 응용)

  • Kim, Sang-Su
    • Journal of Distribution Science
    • /
    • v.11 no.10
    • /
    • pp.73-79
    • /
    • 2013
  • Purpose - This study examines the impact of oil price volatility on economic activities in Korea. The new millennium has seen a deregulation in the crude oil market, which invited immense capital inflow into Korea. It has also raised oil price levels and volatility. Drawing on the recent theoretical literature that emphasizes the role of volatility, this paper attends to the asymmetric changes in economic growth in response to the oil price movement. This study further examines several key macroeconomic variables, such as interest rate, production, and inflation. We come to the conclusion that oil price volatility can, in some part, explain the structural changes. Research design, data, and methodology - We use two methodological frameworks in this study. First, in regards to the oil price uncertainty, we use an Exponential-GARCH (Exponential Generalized Autoregressive Conditional Heteroskedasticity: EGARCH) model estimate to elucidate the asymmetric effect of oil price shock on the conditional oil price volatility. Second, along with the estimation of the conditional volatility by the EGARCH model, we use the estimates in a VECM (Vector Error Correction Model). The study thus examines the dynamic impacts of oil price volatility on industrial production, price levels, and monetary policy responses. We also approximate the monetary policy function by the yield of monetary stabilization bond. The data collected for the study ranges from 1990: M1 to 2013: M7. In the VECM analysis section, the time span is split into two sub-periods; one from 1990 to 1999, and another from 2000 to 2013, due to the U.S. CFTC (Commodity Futures Trading Commission) deregulation on the crude oil futures that became effective in 2000. This paper intends to probe the relationship between oil price uncertainty and macroeconomic variables since the structural change in the oil market became effective. Results and Conclusions - The dynamic impulse response functions obtained from the VECM show a prolonged dampening effect of oil price volatility shock on the industrial production across all sub-periods. We also find that inflation measured by CPI rises by one standard deviation shock in response to oil price uncertainty, and lasts for the ensuing period. In addition, the impulse response functions allude that South Korea practices an expansionary monetary policy in response to oil price shocks, which stems from oil price uncertainty. Moreover, a comparison of the results of the dynamic impulse response functions from the two sub-periods suggests that the dynamic relationships have strengthened since 2000. Specifically, the results are most drastic in terms of industrial production; the impact of oil price volatility shocks has more than doubled from the year 2000 onwards. These results again indicate that the relationships between crude oil price uncertainty and Korean macroeconomic activities have been strengthened since the year2000, which resulted in a structural change in the crude oil market due to the deregulation of the crude oil futures.

Modeling Stock Price Volatility: Empirical Evidence from the Ho Chi Minh City Stock Exchange in Vietnam

  • NGUYEN, Cuong Thanh;NGUYEN, Manh Huu
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.6 no.3
    • /
    • pp.19-26
    • /
    • 2019
  • The paper aims to measure stock price volatility on Ho Chi Minh stock exchange (HSX). We apply symmetric models (GARCH, GARCH-M) and asymmetry (EGARCH and TGARCH) to measure stock price volatility on HSX. We used time series data including the daily closed price of VN-Index during 1/03/2001-1/03/2019 with 4375 observations. The results show that GARCH (1,1) and EGARCH (1,1) models are the most suitable models to measure both symmetry and asymmetry volatility level of VN-Index. The study also provides evidence for the existence of asymmetric effects (leverage) through the parameters of TGARCH model (1,1), showing that positive shocks have a significant effect on the conditional variance (volatility). This result implies that the volatility of stock returns has a big impact on future market movements under the impact of shocks, while asymmetric volatility increase market risk, thus increase the attractiveness of the stock market. The research results are useful reference information to help investors in forecasting the expected profit rate of the HSX, and also the risks along with market fluctuations in order to take appropriate adjust to the portfolios. From this study's results, we can see risk prediction models such as GARCH can be better used in risk forecasting especially.

Application of Volatility Models in Region-specific House Price Forecasting (예측력 비교를 통한 지역별 최적 변동성 모형 연구)

  • Jang, Yong Jin;Hong, Min Goo
    • Korea Real Estate Review
    • /
    • v.27 no.3
    • /
    • pp.41-50
    • /
    • 2017
  • Previous studies, especially that by Lee (2014), showed how time series volatility models can be applied to the house price series. As the regional housing market trends, however, have shown significant differences of late, analysis with national data may have limited practical implications. This study applied volatility models in analyzing and forecasting regional house prices. The estimation of the AR(1)-ARCH(1), AR(1)-GARCH(1,1), and AR(1)-EGARCH(1,1,1) models confirmed the ARCH and/or GARCH effects in the regional house price series. The RMSEs of out-of-sample forecasts were then compared to identify the best-fitting model for each region. The monthly rates of house price changes in the second half of 2017 were then presented as an example of how the results of this study can be applied in practice.

Expiration-Day Effects on Index Futures: Evidence from Indian Market

  • SAMINENI, Ravi Kumar;PUPPALA, Raja Babu;MUTHANGI, Ramesh;KULAPATHI, Syamsundar
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.11
    • /
    • pp.95-100
    • /
    • 2020
  • Nifty Bank Index has started trading in futures and options (F&O) segment from 13th June 2005 in National Stock Exchange. The purpose of the study is to enhance the literature by examining expiration effect on the price volatility and price reversal of Underlying Index in India. Historical data used for the current study primarily comprise of daily close prices of Nifty Bank which is the only equity sectoral index in India which is traded in derivatives market and its Future contract value is derived from the underlying CNX Bank Index during the period 1st January 2010 till 31st March 2020. To check stationarity of the data, Augmented Dicky Fuller test was used. The study employed ARMA- EGARCH model for analysing the data. The empirical results revealed that there is no effect on the mean returns of underlying Index and EGARCH (1,1) model furthermore shows there is existence of leverage effect in the Bank Index i.e., negative shocks causes more fluctuations in the Index than positive news of similar magnitude. The outcome of the study specifies that there is no effect on volatility on the underlying sectoral index due to expiration days and also observed no price reversal effect once the expiration days are over.

A Study on Unfolding Asymmetric Volatility: A Case Study of National Stock Exchange in India

  • SAMINENI, Ravi Kumar;PUPPALA, Raja Babu;KULAPATHI, Syamsundar;MADAPATHI, Shiva Kumar
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.4
    • /
    • pp.857-861
    • /
    • 2021
  • The study aims to find the asymmetric effect in National Stock Exchange in which the Nifty50 is considered as proxy for NSE. A return can be stated as the change in value of a security over a certain time period. Volatility is the rate of change in security value. It is an arithmetical assessment of the dispersion of yields of security prices. Stock prices are extremely unpredictable and make the investment in equities risky. Predicting volatility and modeling are the most profuse areas to explore. The current study describes the association between two variables, namely, stock yields and volatility in equity market in India. The volatility is measured by employing asymmetric GARCH technique, i.e., the EGARCH (1,1) tool, which was used in building the study. The closing prices of Nifty on day-to-day basis were used for analysis from the period 2011 to 2020 with 2,478 observations in the study. The model arrests the lopsided volatility during the mentioned period. The outcome of asymmetric GARCH model revealed the subsistence of leverage effect in the index and confirms the impact of conditional variance as well. Furthermore, the EGARCH technique was evidenced to be apt in seizure of unsymmetrical volatility.

Value-at-Risk Estimation of the KOSPI Returns by Employing Long-Memory Volatility Models (장기기억 변동성 모형을 이용한 KOSPI 수익률의 Value-at-Risk의 추정)

  • Oh, Jeongjun;Kim, Sunggon
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.1
    • /
    • pp.163-185
    • /
    • 2013
  • In this paper, we investigate the need to employ long-memory volatility models in terms of Value-at-Risk(VaR) estimation. We estimate the VaR of the KOSPI returns using long-memory volatility models such as FIGARCH and FIEGARCH; in addition, via back-testing we compare the performance of the obtained VaR with short memory processes such as GARCH and EGARCH. Back-testing says that there exists a long-memory property in the volatility process of KOSPI returns and that it is essential to employ long-memory volatility models for the right estimation of VaR.

The Impact of Index Future Introduction on Spot Market Returns and Trading Volume: Evidence from Ho Chi Minh Stock Exchange

  • NGUYEN, Anh Thi Kim;TRUONG, Loc Dong
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.8
    • /
    • pp.51-59
    • /
    • 2020
  • The objective of this study is to enrich the literature by investigating the impact of introduction of index future trading on spot market returns and trading volume in Vietnam. Data used in this study mainly consist of daily VN30-Index and market trading volume series during the period from February 6th, 2012 to December 31st, 2019. Using OLS, GARCH(1,1) and EGARCH(1,1) models, the empirical findings consistently confirm that the introduction of index future trading has no impact on the spot market returns. In addition, the results of the EGARCH(1,1) model indicate that the leverage effect on the spot market volatility is existence in HOSE. Specifically, bad news has a greater effect on the market volatility than good news of the same size. Moreover, our empirical findings reveal that the introduction of index future contracts has the positive impact on the underlying market trading volume. Specifically, the trading volume of the post-index futures introduction increases by 7.5 percent compared with the pre-index futures introduction. Finally, the results obtained from the Granger causality test for the relationship between the spot market returns and the future trading activity confirm that only uni-directional causality running from the market returns to the future trading activity exists in HOSE.

Empirical Evidence of Dynamic Conditional Correlation Between Asian Stock Markets and US Stock Indexes During COVID-19 Pandemic

  • TANTIPAIBOONWONG, Asidakarn;HONGSAKULVASU, Napon;SAIJAI, Worrawat
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.9
    • /
    • pp.143-154
    • /
    • 2021
  • This study aims to explore the dynamic conditional correlation (DCC) between ten Asian stock indexes, the US stock index, and Bitcoin by using the dynamic conditional correlation model. The time span of the daily data is between January 2015 to May 2021, the total observation is 1,116. DCC(1,1)-EGARCH(1,1) with multivariate t and normal distributions for the DCC and EGARCH models, respectively, outperforms other models by the goodness of fit values. Except for Bitcoin, we discovered that the majority of the securities' volatilities have a very high volatility persistence. Furthermore, the negative shocks/news have more impact on the volatilities than positive shocks/news in most of the cases, except the stock index of China and Bitcoin. Most of the correlation pairs exhibit higher correlation during the COVID-19 pandemic compared to the pre-COVID-19, except Hong Kong-The US and Malaysia-Indonesia. Moreover, the correlation between Asian stock indexes during the COVID-19 pandemic is statistically higher than the pre-COVID-19 pandemic. However, there are a few instances where the Hong Kong stock index and a few countries are identical. The result of correlation size shows the connectedness between Asian stock markets, which are well-connected within the region, especially with South Korea, Singapore, and Hong Kong.