• Title/Summary/Keyword: EGA

Search Result 45, Processing Time 0.021 seconds

Optimal Design of Aircraft Gas Turbine System supported by Squeeze Film Damper Using Combined Genetic Algorithm (조합 유전 알고리듬을 이용한 항공기 엔진 시스템의 최적설계)

  • 김영찬;안영공;양보석;길병래
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.514-519
    • /
    • 2003
  • The aircraft engine is usually supported by rolling element bearings and has a small damping rate, which is vol y sensitive to external force. The high-performance requirement of the rotors leads to complex assembly designs and are more flexible. Squeeze film dampers (SFDs) are introduced to provide damping while crossing the critical speeds and stability to the rotor s :stem. Hence, the focus of the present investigation is on the decision of an optimal size of the flexible rotor system supported by the squeeze film dampers to minimize the maximum transmitted load and unbalance response over a range operating speeds. The enhanced genetic algorithm (EGA), which was developed by authors, is used in the optimization process. This algorithm is based on the synthesis of a modified genetic algorithm and simplex method. The results show significant benefits in using EGA when compared with nonlinear programming (NLP).

  • PDF

Study on Thermal Properties of CdS - Embedded Poly(2-Acetamidoacrylic acid) Hydrogel Composite (CdS 나노입자틀 삽입한 Poly(2-Acetamidoacrylic acid) 수화젤 복합체의 열적 특성에 관한 연구)

  • Park, Chun-Ho;Ha, Eun-Ju;Jung, Jong-Mo;Lee, Jang-Oo;Paik, Hyun-Jong
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • We report the template-based synthesis of well-dispersed CdS nanoparticles (NPs) in the interior of poly (2-acetamidoacrylic acid) (PAAA) hydrogel as a novel type of nanocomposite without particle aggregation via ion exchange in a aqueous system. As revealed by the TEM image analysis, the mean crystallite diameter of CdS NPs embedded in hydrogel composite was 4.5 nm, and the composite did not suffer any observable change after 6 months. Desorption/decomposition of CdS/PAAA hydrogel composite was studied by evolved gas analysis-gas chromatography-mass spectrometry (EGA-GC-MS), and thermogravimetric analysis (TGA) methods. From the TGA data, the thermal stability of the composite system increased by ca. 100 $^\circ$C and the content of CdS NPs in a dry composite gel was over 70 wt%. In addition, the chemical pathway was proposed for the entire decomposition process.