• Title/Summary/Keyword: EFTS(Enhanced FTS)

Search Result 5, Processing Time 0.019 seconds

Standardization of Enhanced Flight Termination System in the U.S. (미국의 차세대 비행종단시스템 표준화 동향)

  • Bae, Young-Jo;Oh, Chang-Yul;Lee, Hyo-Keun
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.1
    • /
    • pp.86-95
    • /
    • 2010
  • Flight termination system(FTS) is used to terminate safely the launch vehicle's flight when it faces an emergency situation by transmitting termination command from ground FTS. RCC standard IRIG tone method has been used widely for FTS commands method in foreign ranges and Naro Space Center, but this method has a weakness for security of command signal. Therefore RCC had studied more secured EFTS standard and chose CPFSK digital modulation method. This paper describes basic concept and types of FTS and FTS types which foreign ranges had applied and describes standardization of EFTS in the U.S. based on RCC EFTS study reports.

  • PDF

Performance Comparison of EFTS According by Modulations and Channel Codes (변조 방식과 채널 코드에 따른 EFTS 성능 비교)

  • Kang, Sanggee
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.2
    • /
    • pp.94-98
    • /
    • 2013
  • A report of security problems and simultaneous operation limits of Standard tone currently used for FTS introduces the development of a next generation FTS. In this paper, BER performance by modulations and channel coding methods for EFTS are compared. Simulation results show that coherent modulations have better BER performance than noncoherent modulations. However the environments of a lunching vehicle may cause serious problems in achieving and maintaining synchronization and the increasing complexity of coherent systems also increases reliability problems. Therefore noncoherent systems are suitable for FTS even though BER performace of noncoherent systems is lower than coherent systems. Noncoherent DPSK has better BER performance than noncoherent CPFSK. However the PEP of noncoherent DPSK is 0.8dB higher than noncoherent CPFSK. Therefore a transmitter of noncoherent DPSK has more output power than noncoherent CPFSK. Convoltional code has better BER performance than RS code. However RS code has a tendency of steeply decreasing BER near the wanted $E_b/N_0$.

Effects of Interference Signals on the Performance of EFTS (간섭신호가 EFTS의 성능에 미치는 영향)

  • Kang, Sanggee
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.1-4
    • /
    • 2014
  • A radio communication system has interference caused by other radio transmitters operated in co-channel or adjacent channels. Therefore technical specifications are made by considering and investigating the effects of interference between the new system and present systems when the new system will be started to serve in the near future. FTS is used for preventing an abnormal mission and guaranteeing public protection. Recently the next generation FTS's are researched to reinforce the security and to increase the operating capability of simultaneous use. EFTS known as one of the next generation FTS's is suitable for such purposes. In this paper the effects of interference signals on the performance of EFTS are investigated. Noncoherent DPSK and noncoherent CPFSK are considered for the modulation method of EFTS and a FMCW and a pulse RADAR considered as a interferer. The power of FMCW is 20.3dB lower than the power of EFTS and the power of pulse RADAR is 19.1dB lower than that of EFTS. Simulation results show that FMCW interferer reduce $E_b/N_o$ of about 1dB and $E_b/N_o$ of EFTS deteriorates about 0.5dB due to interference signals generated from pulse RADAR.

Effects of Launching Vehicle's Velocity on the Performance of FTS Receiver (발사체의 속도가 FTS 수신기의 성능에 미치는 영향)

  • Kang, Sanggee
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.27-32
    • /
    • 2014
  • A doppler shift is generated by moving a transmitter or receiver operated in communication systems. The doppler frequency shift between a transmitter and a receiver or the frequency offset present in transceivers must be removed to get the wanted system performance. FTS is used for preventing an accident from operating abnormally and for guaranteeing public protection. A launching vehicle's initial velocity is very fast in order to escape the earth and the amount of doppler shift is large. Recently many studies to adopt the next generation FTS are ongoing. To introduce new FTS, the effects of doppler shift on the performance of the new FTS must be studied. In this paper the doppler effect caused by launching vehicle's velocity affecting the performance of FTS receiver is investigated into two cases, one is for EFTS as a digital FTS and the other is for FTS using a tone signal. Noncoherent DPSK and noncoherent CPFSK are considered as the modulation methods of EFTS. In the cases of the doppler frequency shift of 200Hz present in EFTS using noncoherent DPSK and noncoherent CPFSK are simulated. Simulation results show that $E_b/N_o$ of 0.5dB deteriorates in the region of near BER of about $10^{-5}$ in RS coding. And there is no performance variation in $E_b/N_o$ or $E_b/N_o$ is worsened about 0.1dB in the same BER region for the case of using convolutional and BCH coding. Quadrature detector used in FTS using tone signals is not influenced by the doppler frequency shift.

Effects of the Method of FTSs on the Performance of HPAs (FTS 방식이 전력증폭기의 성능에 미치는 영향)

  • Kang, Sanggee
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.1
    • /
    • pp.8-13
    • /
    • 2013
  • It is necessary to develop the next generation FTS which is suitable for our environment and effectively operates many launch vehicles. Standard tone, Secure tone, MHA, EFTS and DSSS are studied for the next generation FTS. FTS requires a high quality of performance and reliability because of their specific mission. And few FTSs are needed but the price is very expensive. Therefore we must investigate a part of the FTS whether the part can be reused for a part of the next FTS. In this paper, we use CCDF of the transmitted signal from FTS as the method to study a possibility of reusing HPA used in the present system. The simulation results show that PEP of Standard tone is 0.21dB and Secure tone and MHA has the same PEP. CPFSK's PEP is 1.81dB and PEP of DSSS using BPSK modulation is 2.6dB.