• Title/Summary/Keyword: EERUF

Search Result 2, Processing Time 0.016 seconds

Driving Environment Recognition and a Simple Wall-Following Algorithm for AGV Using Sonar Sensor (초음파 센서를 이용한 AGV의 주행 환경 인식과 간단한 벽면 따르기 알고리즘)

  • Kim, Seong-Joong;Lee, Jeong-Woong;Lee, Chang-Goo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2337-2340
    • /
    • 2002
  • This paper presents the method of AGV(Automatic guided vehicle)'s moving environment(plane, corner, edge) recognition using SONAR sensor configuration. As for the SONAR sensor, the Crosstalk effect has been generally considered as an inevitable noisy phenomenon in the indoor environment. However, this effect can be used as a clue for classifying and localizing targets in the indoor environment if those can be controlled and used well. EERUF(error eliminate rapid ultrasonic firing) is a method for firing multiple ultrasonic sensors in mobile robot application and multi-echo mode of POLARIOD Device can reduce the Crosstalk effect. Here, Crosstalk effect was reduced using EERUF and applied to the AGV with a simple wall-following algorithm in the indoor environment. This method was tesed by a typical AGV with multi SONAR sensors in the laboratory environment.

  • PDF

A Study on Obstacles Avoidance for Mobile Robot Using Ultrasonic Sensor Array (초음파 어레이를 이용한 이동 로봇의 장애물 회피에 관한 연구)

  • 김병남;지용근;권오상;이응혁
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.1113-1116
    • /
    • 1999
  • For mobile robot, the navigation effectiveness can be improved by providing autonomy, but this autonomy requires the mobile robot to detect unknown obstacles and avoid collisions while moving it toward the target. This paper presents an effective method for autonomous navigation of the mobile robot in structured environments. This method uses ultrasonic sensor array to detect obstacles and utilizes force relationship between the obstacles and the target for avoiding collisions. Accuracy of sensory data produced by ultrasonic sensors is improved by employing error eliminating rapid ultrasonic firing (EERUF) technique. Navigation algorithm controlling both the velocity and steering simultaneously is developed, implemented to the mobile robot and tested on the floor filled with the cluttered obstacles. It is verified that from the results of the field tests the mobile robot can move at a maximum speed of 0.66 m/sec without any collisions.

  • PDF