• 제목/요약/키워드: EEG signal

검색결과 364건 처리시간 0.025초

뇌와 컴퓨터의 인터페이스를 위한 뇌파 측정 및 분석 방법 (EEG Signals Measurement and Analysis Method for Brain-Computer Interface)

  • 심귀보;염홍기;이인용
    • 한국지능시스템학회논문지
    • /
    • 제18권5호
    • /
    • pp.605-610
    • /
    • 2008
  • 사람과 컴퓨터의 인터페이스를 위한 방법에는 여러 가지가 있으나 보나 편리하고 몸이 불편한 사람들도 이용할 수 있도록 하기 위하여 최근에는 사람의 뇌파를 이용하여 인터페이스를 하기 위한 연구가 활발히 진행되고 있다. 따라서 세계 여러나라에서 뇌파에 대한 연구가 진행되고 있다. 하지만 아직까지 뇌파에 대한 정확한 분석이 이루어지지 못하고 있는 실정이다. 이를 위해 본 논문에서는 정확한 뇌파분석을 위한 뇌파 유발 자극방법 및 측정법을 제안하고, Fp1, Fp2, C3, C4 영역에서 뇌파를 측정하여 사람이 팔을 움직이고자 하는 상상을 할 때 ${\mu}$파와 ${\beta}$파에서 발견되는 Event-Related Synchronization(ERS), Event-Related Desynchronization(ERD)을 분석함으로써 사람의 의도를 뇌파를 통해 인지하고자 한다. 실험결과 피험자가 오른쪽 팔을 움직이고자 할 경우 왼쪽 뇌에서 ${\mu}$파 감소하고 ${\beta}$파는 증가하였으며, 왼쪽 팔을 움직이고자 한 경우 반대로 우뇌에서 ${\mu}$파가 감소하고 ${\beta}$파가 증가하는 것을 알 수 있었다.

Analysis on the Depth of Anesthesia by Using EEG and ECG Signals

  • Ye, Soo-Young;Choi, Seok-Yoon;Kim, Dong-Hyun;Song, Seong-Hwan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권6호
    • /
    • pp.299-303
    • /
    • 2013
  • Anesthesia, which started being used to remove pain during surgery, has become itself one of the major concerns to be considered during surgery. While actual anesthesia is being performed, patients tend to have unpleasant experiences, due to wakening that accompanies pain, or wakening that does not accompany pain. Since this awakening during anesthesia is a most unpleasant experience in a patient's life, evaluating the depth of anesthesia during surgery is essential for patients to avoid this experience. Although there has been much effort on the understanding and measurement of the depth of anesthesia, while various researches were performed on the need of anesthesia, the development of an indicator that could objectively evaluate the depth of anesthesia, other than by using the patient's vital signs, is still inadequate. Therefore, this study was to develop an objective indicator by using EEG and ECG, which are essentially measured during the surgery, to evaluate the depth of anesthesia. The experiment was performed by taking patients who require a relatively short operation time, and general inhalation anesthetics among surgical patients in obstetrics and gynecology as the subjects of experiment, to measure the EEG and ECG signals of patients under anesthetics. The result showed that SEF using EEG and LF, HF using ECG signal and correlation dimension analysis parameter were valuable parameters that could measure the depth of anesthesia, by the stage of anesthesia.

SD 및 EEG 기법을 통한 자연 및 도시경관의 시지각적 인지분석 (SD and EEG Evaluation of the Visual Cognition to the Natural and Urban Landscape)

  • 황지욱;홍철운;정우석
    • 한국환경과학회지
    • /
    • 제15권4호
    • /
    • pp.305-310
    • /
    • 2006
  • The color and structure of urban constructions is a factor of urban landscape and shows their characteristics. Hence the modern buildings deal with their materials and external appearance as an important factor, making up the urban image. But it was nearby impossible to evaluate the value of visual landscape with objective measuring method. Most of all, it depends on the subjective estimation of a few talented or high educated experts with a sense of beauty. Such kinds of estimation can in some cases include arbitrary interpretations. In relation to this kind of problems, it is tried here in this study to analyse the human response of brain wave pattern (EEG) with use of SD method, while the tested persons watch the urban landscape scenery constructed in a visual reality. The tested persons were 20 adult male and female with no color blindness and intact cognitive function. Light source with color filter was used for color environment in a dark soundproof chamber. The signal of EEG is analysed digitally and grouped into the ${\alpha}$ and ${\beta}$ waves. The result showed that relative power of ${\alpha}$ wave ratio increased in the natural landscape scenery with blue and green color. From these results it was possible to evaluate the human response, which is affected by urban and natural color and structure stimulation and it might be useful as an indicator of visual cognition amenity toward the design of urban construction environment.

뇌파기반 드론제어를 위한 기계학습에 관한 연구 (Study of Machine Learning based on EEG for the Control of Drone Flight)

  • 홍예진;조성민;차도완
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.249-251
    • /
    • 2022
  • 본 연구에서는 뇌파를 이용하여 드론을 제어하기 위한 기계학습을 논의한다. 드론의 이륙과 전진, 후진, 좌측 이동 그리고 우측 이동을 제어대상으로 정의하였고 이를 제어하기 위한 뇌파의 신호를 전두엽을 대상으로 하는 Fp1·Fp2 2채널 건식 전극(NeuroNicle FX2) 뇌파 측정장비를 통하여 5.19초동안 각 제어대상과 연관된 행동의 운동 심상을 눈을 뜬 상태에서 측정(Sampling Rate 250Hz, Cutoff Frequency 6~20Hz) 하였다. 측정된 뇌파신호에 대해 매틀랩의 분류학습기를 이용해서 삼중 계층 신경망, 로지스틱 회귀커널, 비선형 3차 SVM 학습을 실시하였으며 학습결과 로지스틱 회귀 커널 학습에서 드론의 이륙과 전진, 후진, 좌측 이동 그리고 우측 이동을 위한 가장 높은 정확도를 가지고 있음을 클래스 참양성률로 확인할 수 있었다.

  • PDF

휴대용 수면 패턴 모니터링을 위한 복합 fNIRS-EEG 시스템 개발 (Development of a Hybrid fNIRS-EEG System for a Portable Sleep Pattern Monitoring Device)

  • 김경한;우성우;하성훈;박금룡;사커 엠디 샤힌;박배정;김창세
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권6호
    • /
    • pp.392-403
    • /
    • 2023
  • This study presents a new hybrid fNIRS-EEG system to meet the demand for a lightweight and low-cost sleep pattern monitoring device. For multiple-channel configuration, a six-channel electroencephalogram (EEG) and a functional near-infrared spectroscopy (fNIRS) system with eight photodiodes (PD) and four dual-wavelength LEDs are designed. To enhance the convenience of signal measurement, the device is miniaturized into a patch-like form, enabling simultaneous measurement on the forehead. Due to its fully integrated functionality, the developed system is advantageous for performing sleep stage classification with high-temporal and spatial resolution data. This can be realized by utilizing a two-dimensional (2D) brain activation map based on the concentration changes in oxyhemoglobin and deoxyhemoglobin during sleep stage transitions. For the system verification, the phantom model with known optical properties was tested at first, and then the sleep experiment for a human subject was conducted. The experimental results show that the developed system qualifies as a portable hybrid fNIRS-EEG sleep pattern monitoring device.

Bispectrum 및 Correlation 을 이용한 뇌유발전위 검출 (Evoked Potential Estimation using the Iterated Bispectrum and Correlation Analysis)

  • 한상우;안창범
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1994년도 추계학술대회
    • /
    • pp.113-116
    • /
    • 1994
  • Estimation of the evoked potential using the iterated bispectrum and cross-correlation (IBC) has been tried for both simulation and real clinical data. Conventional time average (TA) method suffers from synchronization error when the latency time of the evoked potential is random, which results in poor SNR distortion in the estimation of EP waveform. Instead of EP signal average in time domain, bispectrum is used which is insensitive to time delay. The EP signal is recovered by the inverse transform of the Fourier amplitude and phase obtained from the bispectrum. The distribution of the latency time is calculated using cross-correlation between EP signal estimated by the bispectrum and the acquired signal. For the simulation. EEG noise was added to the known EP signal and the EP signal was estimated by both the conventional technique and bispectrum technique. The proposed bispectrum technique estimates EP signal more accurately than the conventional technique with respect to the maximum amplitude of a signal, full width at half maximum(FWHM). signal-to-noise-ratio, and the position of maximum peak. When applied to the real visual evoked potential(VEP) signal. bispectrum technique was able to estimate EP signal more distinctively. The distribution of the latency time may play an important role in medical diagonosis.

  • PDF

EIV와 MLP를 이용한 뇌파 기반 운전자의 졸음 감지 시스템 (Electroencephalogram-Based Driver Drowsiness Detection System Using Errors-In-Variables(EIV) and Multilayer Perceptron(MLP))

  • 한형섭;송경영
    • 한국통신학회논문지
    • /
    • 제39C권10호
    • /
    • pp.887-895
    • /
    • 2014
  • 졸음운전은 전체 교통사고 원인 중 큰 비중을 차지하며 그 위험성이 음주운전보다도 크다고 알려져 있다. 따라서 운전자의 졸음을 판단하고 경고하는 시스템 개발에 대한 관심이 높아지고 있으며, 뇌파를 분석하는 것이 운전자의 피로와 졸음을 감지하는데 효과적이라는 연구결과들이 발표되었다. 본 논문은 짧은 시간에 높은 해상도를 가지는 auto-regressive 모델 기법 중 잡음에 강인한 errors-in-variables(EIV) 방법을 이용하여 특징벡터를 추출하고, 다층신경망(multilayer perceptron; MLP)에 적용하여 운전자의 상태를 각성, 천이, 졸음의 세 가지 상태로 분류하는 졸음 감지 시스템을 제안한다. 생체신호의 측정 환경에 따른 성능을 평가하기 위해 높은 진단률을 갖도록 하는 EIV차수를 결정하고, 잡음에 대한 강인성을 확인하기 위해 신호대 잡음비(signal-to-noise ratio; SNR)에 따른 성능을 선형 예측 부호화(linear predictive coding; LPC) 방법과 비교하였다. 이 결과로부터 제안한 EIV와 MLP를 결합한 졸음 감지 시스템은 기존의 LPC와 MLP를 이용한 시스템에 대해 우수한 성능을 얻을 수 있음을 확인하였다.

생체정보를 이용한 유비쿼터스 심리상태 인식 모델 연구 (A Study on Ubiquitous Psychological State Recognition Model Using Bio-Signals)

  • 전기환;최형진
    • 한국통신학회논문지
    • /
    • 제35권2B호
    • /
    • pp.232-243
    • /
    • 2010
  • 본 논문에서는 다양한 생체신호들을 이용하여 심리상태와 생체정보를 판별하고, 외부환경 정보와 함께 이용자의 현재 상황을 인식하여 그에 맞는 적절한 서비스를 제공하는 생체정보기반 상황인식시스템(Bio-Signal Context aware system :BSC)을 설계하고 구현한다. 본 논문에서 구현한 생체정보기반 상황인식시스템은 센서를 통하여 측정된 뇌파(EEG), 심전도(ECG), 피부전도도(GSR) 등의 생체신호들로부터 특징들을 추출하고 분석하였으며, 분석된 결과를 입력받아 평온, 집중, 긴장, 우울의 네 가지 심리상태를 판별하였다. 판별된 심리상태의 결과와 함께 심박변이도(HRV), 피부전도도, 체온 등의 생체신호로부터 분석된 생체 상황정보, 그리고 외부 환경의 상황정보로부터 이용자의 현재 상황을 추론하고 인식하여 현재 생체 상황에 맞는 적절한 서비스를 제공하였다.

시각적으로 유발되는 어지럼증(VIMS)에 따른 신체적 반응 및 유발 요인 분석 (Analysis of causal factors and physical reactions according to visually induced motion sickness)

  • 이채원;최민국;김규성;이상철
    • 한국HCI학회논문지
    • /
    • 제9권1호
    • /
    • pp.11-21
    • /
    • 2014
  • 본 논문은 시각 정보로 인해 유발되는 어지럼증(Visually Induced Motion Sickness, VIMS)에 따른 뇌전도(EEG)와 활력 징후(vital sign)의 신체적 반응 및 유발 요인에 대한 분석에 대한 연구이며, 피험자 상태 기반의 동영상 모션 보정을 위한 선행 연구로 수행되었다. 이를 위해 어지럼증을 유발하는 동영상을 제작하여 총 11명의 피험자들에 대한 설문조사와 실험을 수행하였다. 동영상 제작을 위해 모션 벡터 추출 기법인 옵티컬 플로우(optical flow) 측정법을 이용하여 VIMS 유발 동영상으로부터 전역 모션을 추출하고 이를 모션이 없는 동영상에 적용하여 인위적인 모션을 갖는 동영상을 제작하였다. 실험 동영상은 콘텐츠 종류에 따라 영화, 텍스트 두 종류로 분류되며, 적용된 모션 강도에 따라 콘텐츠 별 세 편씩 총 여섯 편의 실험 동영상을 제작하였다. 피험자가 시청하는 동안 간이 뇌전도 측정기를 이용하여 실시간으로 뇌전도를 측정하였고, 이와 동시에 전자혈압계를 이용해 최고/최저 혈압과 맥박을 주기적으로 측정하였다. 측정된 뇌전도 신호는 채널 별 신호 간 상관도(correlation) 연산을 통해 얻어진 Distance Map(DM)을 활용하여 분석하였으며, 측정된 신체 반응 지수와 모션 강도 및 설문조사 결과와 관계에 대한 정량적 분석 및 분류를 수행하였다. 결과 분석을 통해 동영상의 모션 강도와 동영상 시청 전후의 신체 반응의 변화 정도에 따라 모션과 피험자가 느끼는 어지럼에 대한 상관관계를 분석하여 피험자를 특정한 그룹으로 분류할 수 있었다.

맞춤형 BCI시스템을 위한 STFT와 PSO를 이용한 ERS특징 추출 (ERS Feature Extraction using STFT and PSO for Customized BCI System)

  • 김용훈;김준엽;박승민;고광은;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제22권4호
    • /
    • pp.429-434
    • /
    • 2012
  • 본 논문에서는 사지가 마비되어 신체를 움직이지 못하지만 뇌의 기능은 정상적인 대 마비 환자들을 위한, 생각만으로 외부의 장치를 제어할 수 있도록 하는 BCI(Brain-Computer Interface) 시스템 제어기술을 연구하였다. 사지를 움직이는 상상을 할 경우, 뇌의 운동 감각 피질 영역에서 발생하는 뮤리듬(${\mu}8$-12Hz)에서 증가되는 신호의 패턴인 Event-Related Synchronization (ERS)를 Short-Time Fourier Transform (STFT)과 Particle Swarm Optimization (PSO)를 이용하여 검출 하는 방법을 시도 하였다. ERS는 사람마다 다른 주파수 영역에서 발생하며, 본 논문에서는 ERS가 가장 많이 발현되고 전압이 큰 주파수를 검출하기 위해 8-12Hz 주파수영역의 EEG평균에서 PSO를 이용하여 가장 큰 진폭을 가지는 주파수를 확인 한 후, 해당 주파수를 사용하여 C3, C4채널에서 동작 상상 시 나타나는 ERS의 특징을 PSO를 이용하여 찾는 것이며. 개개인 마다 다른 주파수 영역에서 나타나는 ERS의 특징을 가장 많이 발현되는 주파수영역으로 고정하여 움직임 분석을 시도 하였다. 실험 결과에 사용된 data는 BCI competition IV data set의 실험자 b data를 사용 하였고, 하나의 주파수 대역만을 사용한 결과 왼손 40%, 오른손 38% 검출 정확도를 보였다.