• 제목/요약/키워드: EEG Classification

검색결과 201건 처리시간 0.021초

뇌파신호 측정을 위한 고성능 전치증폭기 제작 및 자동 신호분류 시스템 개발 (Fabrication of High Precision Pre-amplifier for EEG Signal Measurement and Development of Auto Classification System)

  • 도영수;장긍덕;남효덕;장호경
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.409-412
    • /
    • 2000
  • A high performance EEG signal measurement system is fabricated. It consists of high precision pre-amplifier and auto identification bandwidth unit. High precision pre-amplifier is composed of signal generator, signal amplifier with a impedance converter, body driver and isolation amplifier. The pre-amplifier is designed for low noise characteristics, high CMRR, high input impedance, high IMRR and safety, Auto identification bandwidth unit is composed of AD-converter and PIC micro-controller for real time processing EEG signal. The performance of EEG signal measurement system has been shown the classified bandwidth through the clinical demonstrations.

  • PDF

State Analysis and Location Tracking Technology through EEG and Position Data Analysis

  • Jo, Guk-Han;Song, Young-Joon
    • 한국정보기술학회 영문논문지
    • /
    • 제8권2호
    • /
    • pp.27-39
    • /
    • 2018
  • In this paper, we describe the algorithms, EEG classification methods, and position data analysis methods using EEG and ADS1299 sensors. In addition, it is necessary to manage the amount of real-time data of location data and EEG data and to extract data efficiently. To do this, we explain the process of extracting important information from a vast amount of data through a cloud server. The electrical signals extracted from the brain are measured to determine the psychological state and health status, and the measured positions can be collected using the position sensor and triangulation method.

BCI 기반 로봇 손 제어를 위한 악력 변화에 따른 EEG 분석 (EEG Analysis Following Change in Hand Grip Force Level for BCI Based Robot Arm Force Control)

  • 김동은;이태주;박승민;고광은;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제23권2호
    • /
    • pp.172-177
    • /
    • 2013
  • BCI (Brain Computer Interface)는 인간의 뇌에서 측정된 EEG (Electroencephalogram)를 활용하여 의수와 같은 기기를 조종할 수 있는 좋은 방법 중 하나이다. 본 논문에서는 EEG와 힘과의 관계를 알아보고자 최대수축악력 (MVC)의 25%, 50%, 75%로 3개의 등급으로 나누어 EEG 변화를 측정하였다. 얻어진 EEG data를 FFT와 power spectrum analysis로 ${\alpha}$, ${\beta}$, ${\gamma}$파로 나누어 각 파형의 파워 값을 구한 뒤, 구해진 EEG 파워 값을 PCA와 LDA를 사용하여 특징 추출 및 분류를 하였다. 실험 결과 25%의 악력을 가할 때 보다 75%의 악력 때 더 높은 EEG 파워의 증가를 확인하였고, 왼손과 오른손은 각각 52.03%와 77.7%의 분류율을 나타내었다.

선형예측계수와 뇌파의 변화를 이용한 신경회로망 기반 운전자의 졸음 감지 시스템 (Neural-network-based Driver Drowsiness Detection System Using Linear Predictive Coding Coefficients and Electroencephalographic Changes)

  • 정의필;한형섭
    • 융합신호처리학회논문지
    • /
    • 제13권3호
    • /
    • pp.136-141
    • /
    • 2012
  • 운전 중 운전자의 졸음은 교통 사망사고를 일으키는 중요한 요인이며 음주운전보다도 더 위험할 수 도 있다. 이러한 이유로 운전자의 졸음을 판별하고 경고하는 시스템 개발이 최근에 매우 중요한 이슈로 떠올랐다. 그중에서도 졸음과 가장 밀접한 관련이 있는 생체 신호인 뇌파 (Electroencephalogram, EEG)와 안구전도 (Electrooculogram, EOG)를 분석하는 연구가 주류를 이루고 있다. 본 논문에서는 실험 프로토콜에 의거하여 측정된 뇌파를 주파수별로 분석하여 운전자의 상태별 뇌파 데이터베이스를 구축하고 선형예측(Linear Predictive coding, LPC) 계수를 특징벡터로 한 신경회로망 기반 운전자 졸음 감지 시스템을 제안한다. 실험결과로 졸음의 뇌파분석에서 알파파가 감소하며 세타파가 증가하는 추세를 보였으며, LPC 계수가 각성, 졸음 및 수면상태의 특징을 잘 반영하였다. 특히 제안한 시스템은 적은 샘플(250ms)을 가지고도 96.5%라는 높은 분류 결과를 얻어 짧은 순간에 일어날 수 있는 운전 시 돌발 상황을 실시간으로 검출 가능성을 확인하였다.

점진적 모델에 기반한 다채널 시계열 데이터 EEG의 특징 분석 (Feature Analysis of Multi-Channel Time Series EEG Based on Incremental Model)

  • 김선희;양형정;;정종문
    • 정보처리학회논문지B
    • /
    • 제16B권1호
    • /
    • pp.63-70
    • /
    • 2009
  • BCI 기술은 생체신호인 뇌파를 수집하여 신호처리를 거친 후 실질적인 기기제어 및 통신 시스템 등을 제어하는 시스템 관련 기술이다. BCI 시스템 구현을 위해서는 뇌파의 특성을 실시간으로 분석하여 학습 시키고 학습된 뇌파의 특성을 적용하는 단계가 요구된다. 본 논문에서는 EEG 데이터를 효율적으로 분석하기 위해 점진적으로 갱신되는 주성분 분석을 이용하여 왼손/오른손 동작에 영향을 미치는 EEG 신호의 특징을 찾고, 이를 반영하여 데이터의 차원을 축소한다. 입력 자료의 특징을 충분히 포함하면서 낮은 차원을 가지는 데이터를 이용한다면 분류를 위한 계산량을 감소시킬 수 있을 뿐만 아니라 불필요한 특징을 제거함으로써 분류 성능을 향상 시킬 수 있다. 본 논문에서는 점진적으로 갱신되는 주성분 분석을 이용하여 데이터의 차원을 축소하고 이에 대한 효율성을 검증하기 위해 K-NN분류기를 이용하여 분류 정확도 측정을 수행하였다. 그 결과 주성분 분석을 이용하여 특징을 추출하고 분류율을 측정한 경우보다 평균 5% 높은 분류 정확율을 보였다.

AR계수와 SVM을 이용한 뇌파 기반 운전자의 졸음 감지 시스템 (Electroencephalogram-based Driver Drowsiness Detection System Using AR Coefficients and SVM)

  • 한형섭;정의필
    • 한국지능시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.768-773
    • /
    • 2012
  • 운전 중 운전자의 졸음은 교통 사망사고를 일으키는 중요한 요인이며 음주운전보다도 더 위험할 수 도 있다. 이러한 이유로 운전자의 졸음을 판별하고 경고하는 시스템 개발이 최근에 매우 중요한 이슈로 떠올랐다. 그중에서도 졸음과 가장 밀접한 관련이 있는 생체 신호 분석이 많이 적용되는데 그중에서도 뇌파(Electroencephalogram, EEG)와 안구전도(Electrooculogram, EOG)를 분석하는 연구가 주류를 이루고 있다. 본 논문에서는 실험 프로토콜를 바탕으로 측정된 뇌파를 주파수별로 분석하여 운전자의 상태별 뇌파 데이터베이스를 구축하였고 선형예측(Linear Predictive Coding, LPC) 계수와 Support Vector Machine(SVM)을 이용한 운전자 졸음 감지 시스템을 제안한다. 실험결과로 졸음의 뇌파분석에서 알파파가 감소하며 세타파가 증가하는 추세를 보였으며, LPC 계수가 각성, 졸음 및 수면상태의 특징을 잘 반영하였다. 특히 제안한 시스템은 적은 샘플(250ms)에서도 96.5%의 높은 분류 결과를 얻어 짧은 순간에 일어날 운전시 돌발 상황을 실시간으로 예측할 수 있는 가능성을 보였다.

초기설계 단계 사용자의 감정 인식을 위한 뇌파기반 딥러닝 분류모델 (An EEG-based Deep Neural Network Classification Model for Recognizing Emotion of Users in Early Phase of Design)

  • 장선우;동원혁;전한종
    • 대한건축학회논문집:계획계
    • /
    • 제34권12호
    • /
    • pp.85-94
    • /
    • 2018
  • The purpose of this paper was to propose a model that recognizes potential users' emotional response toward design by classifying Electroencephalography(EEG). Studies in neuroscience and psychology have made an effort to recognize subjects' emotional response by analyzing EEG data. And this approach has been adopted in design since it is critical to monitor users' subjective response in the preface of design. Moreover, the building design process cannot be reversed after construction, recognizing clients' affection toward design alternatives plays important role. An experiment was conducted to record subjects' EEG data while they view their most/least liked images of small-house designs selected by them among the eight given images. After the recording, a subjective questionnaire, PANAS, was distributed to the subjects in order to describe their own affection score in quantitative way. Google TensorFlow was used to build and train the model. Dataset for model training and testing consist of feature columns for recorded EEG data and labels for the questionnaire results. After training and testing, the measured accuracy of the model was 0.975 which was higher than the other machine learning based classification methods. The proposed model may suggest one quantitative way of evaluating design alternatives. In addition, this method may support designer while designing the facilities for people like disabled or children who are not able to express their own feelings toward alternatives.

Classification System of EEG Signals During Mental Tasks

  • Seo Hee Don;Kim Min Soo;Eoh Soo Hae;Huang Xiyue;Rajanna K.
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 학술대회지
    • /
    • pp.671-674
    • /
    • 2004
  • We propose accurate classification method of EEG signals during mental tasks. In the experimental task, the tasks of subjects show 3 major measurements; there are mathematical tasks, color decision tasks, and Chinese phrase tasks. The classifier implemented for this work is a feed-forward neural network that trained with the error back-propagation algorithm. The new BCI system is proposed by using neural network. In this system, tr e architecture of the neural network is composed of three layers with a feed-forward network, which implements the error back propagation-learning algorithm. By applying this algorithm to 4 subjects, we achieved $95{\%}$ classification rates. The results for BCI mathematical task experiments show performance better than those of the Chinese phrase tasks. The selection time of each task depends on the mental task of subjects. We expect that the proposed detection method can be a basic technology for brain-computer interface by combining with left/right hand movement or yes/no discrimination methods.

  • PDF

Improved Feature Extraction of Hand Movement EEG Signals based on Independent Component Analysis and Spatial Filter

  • 응웬탄하;박승민;고광은;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제22권4호
    • /
    • pp.515-520
    • /
    • 2012
  • In brain computer interface (BCI) system, the most important part is classification of human thoughts in order to translate into commands. The more accuracy result in classification the system gets, the more effective BCI system is. To increase the quality of BCI system, we proposed to reduce noise and artifact from the recording data to analyzing data. We used auditory stimuli instead of visual ones to eliminate the eye movement, unwanted visual activation, gaze control. We applied independent component analysis (ICA) algorithm to purify the sources which constructed the raw signals. One of the most famous spatial filter in BCI context is common spatial patterns (CSP), which maximize one class while minimize the other by using covariance matrix. ICA and CSP also do the filter job, as a raw filter and refinement, which increase the classification result of linear discriminant analysis (LDA).

운동심상 EEG 패턴분석을 위한 HSA 기반의 HMM 최적화 방법 (HSA-based HMM Optimization Method for Analyzing EEG Pattern of Motor Imagery)

  • 고광은;심귀보
    • 제어로봇시스템학회논문지
    • /
    • 제17권8호
    • /
    • pp.747-752
    • /
    • 2011
  • HMMs (Hidden Markov Models) are widely used for biological signal, such as EEG (electroencephalogram) sequence, analysis because of their ability to incorporate sequential information in their structure. A recent trends of research are going after the biological interpretable HMMs, and we need to control the complexity of the HMM so that it has good generalization performance. So, an automatic means of optimizing the structure of HMMs would be highly desirable. In this paper, we described a procedure of classification of motor imagery EEG signals using HMM. The motor imagery related EEG signals recorded from subjects performing left, right hand and foots motor imagery. And the proposed a method that was focus on the validation of the HSA (Harmony Search Algorithm) based optimization for HMM. Harmony search algorithm is sufficiently adaptable to allow incorporation of other techniques. A HMM training strategy using HSA is proposed, and it is tested on finding optimized structure for the pattern recognition of EEG sequence. The proposed HSA-HMM can performs global searching without initial parameter setting, local optima, and solution divergence.