• Title/Summary/Keyword: EEFL

Search Result 68, Processing Time 0.031 seconds

The Design and An릴ysis of the Piezoelectric Inverter to Drive EEFL for a Large Screen (대화면 Backlight를 위한 EE리 구동용 압전 인버터 설계 및 분석)

  • Park Hong-Sun;Yang Seung-Hak;Lim Young-Cheol;Han Keun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.504-507
    • /
    • 2006
  • 현재 LCD(Liquid Crystal Display)용 광원으로서 주로 냉음극 방전램프(CCFL : Cold Cathode Fluorescent Lamp)가 사용되고 있으며, 그 외 LED를 비롯해서 외부전극 방전램프(EEFL: External Electrode Fluorescent Lamp), 면광원(FFL : Flat Fluorescent Lamp), 전계 방출램프(FEL : Field Emission Lamp)등 다른 광원에 대한 적용도 활발히 진행되고 있다. 본 논문에서는 멀티램프 구동이 유리하여 인버터 개수를 줄일 수 있는 장점을 가지고 있는 EEFL을 사용하였으며, 변압기의 자체 손실을 줄이고 소형화가 가능하며, 높은 승압 비를 갖는 압전 변압기를 병렬로 연결하여 멀티램프 구동이 가능하도록 하였다. 최적의 EEFL 구동회로를 구성하기 위해서 Push-Pull 타입의 압전 인버터를 설계하였으며, 설계된 인버터 회로에 대한 시뮬레이션 분석을 수행하고, 향후 여러 형태의 구동 방법을 적용하므로 서 압전 변압기로도 대화면 멀티 램프 구동용 인버터의 제작이 가능함을 제시하였다.

  • PDF

A Study on Luminescence and Discharge Characteristics of EEFL (External Electrode Fluorescent Lamp) Driven by Square Wave for Large sized-LCD panel (대형 액정디스플레이패널의 백라이트용 외부 전극 형광램프의 구형파 구동 방법에 대한 휘도, 방전 특성 연구)

  • Cho Dae-Youn;Lee Yeon-Jae;Cho Kyu-Min;Oh Won-Sik;Moon Gun-Woo;Lee Sang-Gil;Park Mun-Soo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.409-412
    • /
    • 2006
  • EEFL can be driven by square wave driving method. A square wave is applied directly to both ends of EEFL by cascaded multi-stage full-bridge inverter. The various current shapes of lamp are achieved by various inductors between lamp and inverter. In this paper, it is newly investigated that the area of current directly influences the luminance. Furthermore, the 3-level square wave is considered to drive EEFL with self-discharge characteristics. The highest luminance efficiency is achieved by properly controlling the rate of self-discharge usage.

  • PDF

A Study on the Equivalent Model of an External Electrode Fluorescent Lamp Based on Equivalent Resistance and Capacitance Variation

  • Cho, Kyu-Min;Oh, Won-Sik;Moon, Gun-Woo;Park, Mun-Soo;Lee, Sang-Gil
    • Journal of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.38-43
    • /
    • 2007
  • An External Electrode Fluorescent Lamp (EEFL) has longer lifespan, higher power efficiency and higher luminance than a Cold Cathode Fluorescent Lamp (CCFL). Moreover, it is easy to drive them in parallel. Therefore, the EEFL is expected to quickly replace the CCFL in LCD backlight systems. However, the EEFL has more complex characteristics than the CCFL with a resistive component, because it has both a resistive component by plasma and a capacitive component by external electrode. In this paper, values of resistance and capacitance are measured at several power levels and at several operating frequencies. They are expressed by a numeral formula based on a linear approximation that represents the equivalent resistance and capacitance as a function of power. Then we made block diagram of the equivalent circuit model using numerical expressions. Simulation waveforms and experimental results are presented to verify the feasibility of the equivalent model.

Comparative Study on Sinusoidal and Square Wave Driving Methods of EEFL (External Electrode Fluorescent Lamp) for LCD TV Backlight

  • Lee, Yeon-Jae;Oh, Won-Sik;Lee, Sung-Sae;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.325-328
    • /
    • 2005
  • EEFLs are mostly driven by sinusoidal wave driving method although EEFLs (External Electrode Fluorescent Lamps) are driven by both sinusoidal wave and square wave. The sinusoidal driving method reduces the cost and allows more power efficiency since this driving method can reduce the voltage stress of EEFL inverter switches and achieve the soft switching of the switches. And a transformer should be used in the inverter since the high voltage should be applied to the both ends of EEFL to turn on the lamp. However, the power loss mainly occurs at the transformer in the sinusoidal wave driving method. In order to remove the transformer which makes the power loss, a new method is presented. In this paper, the square wave is applied directly to the both ends of EEFL by a proposed two-stage inverter. Moreover, the luminance and power efficiency will be compared between the common sinusoidal wave driving method and square wave driving method.

  • PDF

Electric Properties of Mercury-free Xe EEFL (무수은 제논 EEFL의 전기적 특성)

  • Lee, Seong-Jin;Kim, Nam-Goon;Lee, Jong-Chan;Park, Noh-Joon;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.7
    • /
    • pp.650-657
    • /
    • 2007
  • This paper had mentioned about CCP light source application for increasing the efficiency of Xe lamp the mercury-free lamp. In order to increase the efficiency of Xe EEFL, we designed and manufactured the lamp used by mixture gas of Xe, Ne and He. Also, we have analyzed the electrical and optical properties with the firing voltage, sustain voltage, paschen's curve, wall charge, and capacitance. As a result, the firing voltage decreased by increasing the ration of mixture gas. and, It is owing to include the gas with high ionization energy. The firing voltage decreased in condition happening the penning effect, Because the ion of metastable state created from penning effect, Which can encourage the ionization phenomena. Also, the wavelength of 467.12 is increase. because of the energy transition in the wavelength of 147 nm. therefore, we can know about the affection of phosphor with UV emission properties. Through an experiment, Xe 100 % and Xe 75 % confirmed same spectrum properties by each mixture gas ratio. In the case of Xe 50 %, spectrum properties appeared Xe discharge and Ne-He discharge. That analyzed an electrical and optical properties. Therefore, confirmed that is excellent because properties of firing voltage, wall charge, capacitance in Xe 50 %, Ne : He = 9 : 1. We offered parameter in inverter manufacture and lamp manufacture by electrical and optical properties.

A New Buck-Boost Half Bridge Inverter for Low Temperature Driving of EEFL (외부전극 형광램프의 저온구동을 위한 새로운 벅부스트 하프브리지 인버터)

  • Cho Kyu-Min;Oh Won-Sik;Moon Gun-Woo;Park Mun-Soo;Lee Sang-Gil
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.387-389
    • /
    • 2006
  • The LCD TV has many variable functions for consumer. Low temperature driving below minus 20 degree is also one of key functions. Since LCD is not self-luminance device, it is needed backlight system. Recently EEFL(External Electrode Fluorescent Lamp) widely substitutes for CCFL(Cold Cathode Fluorescent Lamp). It is more cheaper, higher efficiency, and easy to drive parallel connection compared to CCFL. In this paper, several conditions for low temperature driving of EEFL are investigated and a new boost-half bridge inverter for low temperature driving is proposed. Mode analysis is described and experimental results is represented to verify validity of the proposed inverter.

  • PDF

Dimming Control Characteristics of External Electrode Fluorescent Lamp Inverter (EEFL 인버터의 Dimming 제어 특성)

  • Seo Eun-Kyung;Lim Jeong-Gyu;Chung Se-Kyo;Lee Dae-Sik;Bang Bae-Gyu
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.393-395
    • /
    • 2006
  • This Paper represents a dimming control characteristics of an external electrode fluorescent lamp (EEFL) inverter, which is replacing a cold cathode (luorescent lamp (CCFL) in the area of the large-sized LCD backlight. The analog and burst dimming control methods for the EEFL are compared and the control characteristics are anlayzed through the experiments.

  • PDF

Development of High Performance Backlight Unit Employing EEFL

  • Yoo, Hyeong-Suk;Kang, Moon-Shik;Lim, Jong-Sun;Lee, Keun-Woo;Oh, Weon-Sik;Park, Jong-Dae;Kang, Sung-Chul
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.835-837
    • /
    • 2002
  • The 17" Backlight Unit (BLU) employing twelve EEFLs (External Electrode Fluorescent Lamp) has been developed for LCD-TV The characteristics of the EEFL BLU without dual brightness enhancement film (DBEF) were equivalent to those of CCFL (Cold cathode Fluorescent Lamp) BLU employing eight CCFLs with DBEF. Luminance, power consumption and uniformity were 12,000nits, 32watt and 80%, respectively. The inverter of EEFL Backlight Unit is composed of 2 transformers and driven by the sinusoidal waveform.

  • PDF

Analysis of Inverter Circuit with External Electrode Fluorescent Lamps for LCD Backlight (LCD 백라이트용 외부전극 형광램프의 인버터 회로 해석)

  • Jeong, Jong-Mun;Shin, Myeong-Ju;Lee, Mi-Ran;Kim, Ga-Eul;Kim, Jung-Hyun;Kim, Sang-Jin;Lee, Min-Kyu;Kang, Mi-Jo;Shin, Sang-Cho;Ahn, Sang-Hyun;Gill, Do-Hyun;Yoo, Dong-Gun;Koo, Je-Huan
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.6
    • /
    • pp.587-593
    • /
    • 2006
  • The circuit of the EEFL system and the inverter has been analyzed into the resistance RL, the capacitance C of the EEFL-backlight system, and the inductance of transformer in the inverter. The lamp resistance and capacitance are deter-mined from the phase difference is between the lamp current and voltage and from the Q-V diagram, respectively. The single Lamp of EEFL for 32' LCD-BLU has the resistance of $66\;k\Omega$ and the capacitance of 21.61 pF. The resistance, which is connected by parallel in the 20-EEFLS BLU, is $3.3\;k\Omega$ and the capacitance is 402.1 pF. The matching frequency in the operation of lamp system is noted as $\omega_M=1/\sqrt{L_2C(1-k^2)}$, where $L_2$ is the inductance of secondary coil and k is the coupling coefficient between primary and secondary coil. The lamp current and voltage has maximum value at the matching frequency in the LCD BLU system. The results of analytic solutions are in good agreement with the experimental results.

Design of Inverter for Driving the Multi-lamp using an Piezoelectric Transformers (압전 변압기를 이용한 멀티 램프 구동용 인버터 설계)

  • Cho Sung-Koo;Lim Young-Cheol;Yang Seung-Hak
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.130-137
    • /
    • 2005
  • LCD needs a backlight that is a light source as a photodetector that has a light modulation function and CCFL is used usually. Inverter that composes using existent winding transformer operates multi lamps, however, this efficiency falls by losses of core or winding and volume or weight increases or there is danger of fire by overheating. In order to solve these problems, a multi lamp driving Inverter using PT is composed according to the design guideline in this paper. We conformed whether the multi lamp drive method using EEFL that a current burden is less in applicable to piezoelectric inverter, and used the method that connect two piezoelectric transformers by parallel to an inverter.