• 제목/요약/키워드: EDM Hole

검색결과 53건 처리시간 0.019초

$MoSi_2$ 금속간화합물 복합재료의 미세구조와 방전가공특성 (Microstructure and EDM Processing of $MoSi_2$ Intermetallic Composite)

  • 윤한기;이상필;윤경욱;김동현
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.23-28
    • /
    • 2002
  • This paper describes the machining characteristics of the $MoSi_2$ based composites by electric discharge drilling with various tubular electrodes, besides, Hardness characteristics and microstructures of $Nb/MoSi_2$ laminate composites were evaluated from the variation of fabricating conditions such as preparation temperature, applied pressure and pressure holding time. $MoSi_2$ -based composites has been developed in new materials for jet engine of supersonic-speed airplanes and gas turbine for high- temperature generator. Achieving this objective may require new hard materials with high strength and high temperature-resistance. However, With the exception of grinding, traditional machining methods are not applicable to these new materials. Electric discharge machining (EDM) is a thermal process that utilizes a spark discharge to melt a conductive material, the tool electrode being almost non-unloaded, because there is no direct contact between the tool electrode and the workpiece. By combining a nonconducting ceramics with more conducting ceramic it was possible to raise the electrical conductivity. From experimental results, it was found that the lamination from Nb sheet and $MoSi_2$ powder was an excellent strategy to improve hardness characteristics of monolithic $MoSi_2$. However, interfacial reaction products like (Nb, Mo)$SiO_2$ and $Nb_2Si_3$ formed at the interface of $Nb/MoSi_2$ and increased with fabricating temperature. $MoSi_2$ composites which a hole drilling was not possible by the conventional machining process, enhanced the capacity of ED-drilling by adding $NbSi_2$ relative to that of SiC or $ZrO_2$ reinforcements.

  • PDF

SA508 탄소강 및 오스테나이트 스테인리스강의 표면잔류응력에 미치는 기계가공효과 (Effects on Machining on Surface Residual Stress of SA 508 and Austenitic Stainless Steel)

  • 이경수;이성호;박치용;양준석;이정근;박재학
    • 대한기계학회논문집A
    • /
    • 제35권5호
    • /
    • pp.543-547
    • /
    • 2011
  • 원자력발전소의 이종용접부에서 일차응력부식균열이 발생하고 있으며 용접부의 잔류응력이 균열발생 및 성장에 기여할 수 있다. 용접부의 잔류응력은 기본적으로 용접에 의해 형성되지만 기계가공에 의해 표면잔류 응력상태가 변화할 수 있다. 본 논문에서는 기계가공이 원전재료인 SA508과 오스테나이트 스테인리스강에 표면잔류응력에 미치는 영향을 평가하였다. 이를 위해 SA508, TP304, F316L 재료를 연마, 연삭, 방전가공으로 가공한 후 표면에 형성되는 잔류응력을 측정하였다. 측정방법은 구멍뚫기법과 엑스선회절법을 사용하였다. 기계가공방법에 따라 각 재료에 미치는 잔류응력의 크기 및 방향, 잔류응력이 형성되는 깊이 등의 특성을 확인하였다.

초경엔드밀 적용 표면처리 조성별 마모특성 영향 평가 (The Evaluation of Wear Characteristics Depending on Components of Surface Treatment for Cemented Carbide Endmill)

  • 윤일채;김동배;윤국태;윤인준;이지형;고태조
    • 한국정밀공학회지
    • /
    • 제31권6호
    • /
    • pp.513-519
    • /
    • 2014
  • For depth machining in die and mold, Electrical Discharge Machining (EDM) is used generally. To make deep hole and deep shape efficiently, cemented carbide endmill for depth machining is necessary. For this purpose, cemented carbide endmill was designed using design of experiment (DOE). To improve cutting performance, endmill was coated with multilayer surface treatment, TiAlCrSiN and TiAlCrN, for higher wear resistance. In order to evaluate the endmill, Transverse Rupture Strength (TRS) test was tried for investigating the relationship between surface treatment and strength in endmill body. Scratch test was also used for measuring adhesion force of each surface treatment. To evaluate hardness of surface treatment, Atomic Force Microscope (AFM) analysis was carried out. Wear test was executed for characteristics of each surface treatment in high temperature. Consequently, TiAlCrSiN was superior to the TiAlCrN coating in case of high temperature environment such as cutting.