• Title/Summary/Keyword: EDM Drilling

Search Result 30, Processing Time 0.03 seconds

Diagnosis and Control of Machining States in Micro-Drilling for Productivity Enhancement (미세구멍 가공의 생산성 향상을 위한 상태식별 및 제어)

  • 정만실;조동우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.117-129
    • /
    • 1998
  • Micro-hole drilling (holes less than 0.5 mm in diameter with aspect ratio larger than 10) is recently having more attention in a wide spectrum of precision production industries. Alternative methods such as EDM. laser drilling, etc. can sometimes replace the mechanical micro-hole drilling but are not acceptable in PCB manufacture because of the inferior hole quality and accuracy. The major difficulties in micro-hole drilling are related to small signal to noise ratios, wandering motions of the inlet stage, high aspect ratios, high temperatures and so forth. Of all the difficulties. the most undesirable one is the increase of drilling force as the drill proceeds deeper into the hole. This is caused mainly from the chip effects. Peck-drilling is thus widely used for deep hole drilling despite that it suffers from low productivity. In the paper, a method of cutting force regulation is proposed to achieve continuous drilling. A PD and a sliding mode control algorithms were implemented through controlling the spindle rotating frequency. Experimental results show that the sliding mode control reduces the nominal cutting force and the variation of the cutting force better than the PD control. The advantages of the regulation, such as increase of drill life, fast stabilization of a wandering motion, and the precise positioning of the hole are verified in experiment.

  • PDF

Estimation of Material Removal Volume of a Micro-EDM Drilled Hole Using Discharge Pulse Monitoring

  • Jung, Jae-Won;Ko, Seok-Hoon;Jeong, Young-Hun;Min, Byung-Kwon;Lee, Sang-Jo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.4
    • /
    • pp.45-49
    • /
    • 2007
  • When drilling using electrical-discharge machining (EDM), severe electrode wear makes in-process measurements of the depth of the drilled hole and the volume of material removed impossible. To estimate the volume of material removed a reliable real-time discharge pulse counting method is proposed by assuming that the volume removed in EDM is proportional to the number of discharge pulses from an iso-energy pulse generator. The geometry of machined holes, including depths and cross-sectional profiles, is estimated using geometric analysis. A proportional relationship between the volume of material removed and the number of discharge pulses was developed and verified by experiments.

Sensor system of flowing cell (세포 흐름 감지 시스템)

  • Kwon, Ki-Jin;Kim, Min-Soo;Park, Se-Kwang
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.41-46
    • /
    • 1995
  • Sensor system which can detect a flowing cell is designed and fabricated by semiconductor processing and EDM(Electro-chemical Discharge drilling Method). Two methods are used in this paper; 1) optical method which measures the trasmitted light through the cell passage between transmitter and receiver, 2) impedance method which measures impedance change between electrodes, when cell flows in the cell passage. Experimental result using tabaco leaves shows that the ouput value by optical method is 0.2V to 0.7V, and the output by impedance method is 0.2V to 2V, which is bigger, but it includes an avoidable noises.

  • PDF

Microstructure and EDM Processing of $MoSi_2$ Intermetallic Composite ($MoSi_2$ 금속간화합물 복합재료의 미세구조와 방전가공특성)

  • Yoon, Han-Ki;Lee, Sang-Pill;Yoon, Kyong-Wok;Kim, Dong-Hyun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.23-28
    • /
    • 2002
  • This paper describes the machining characteristics of the $MoSi_2$ based composites by electric discharge drilling with various tubular electrodes, besides, Hardness characteristics and microstructures of $Nb/MoSi_2$ laminate composites were evaluated from the variation of fabricating conditions such as preparation temperature, applied pressure and pressure holding time. $MoSi_2$ -based composites has been developed in new materials for jet engine of supersonic-speed airplanes and gas turbine for high- temperature generator. Achieving this objective may require new hard materials with high strength and high temperature-resistance. However, With the exception of grinding, traditional machining methods are not applicable to these new materials. Electric discharge machining (EDM) is a thermal process that utilizes a spark discharge to melt a conductive material, the tool electrode being almost non-unloaded, because there is no direct contact between the tool electrode and the workpiece. By combining a nonconducting ceramics with more conducting ceramic it was possible to raise the electrical conductivity. From experimental results, it was found that the lamination from Nb sheet and $MoSi_2$ powder was an excellent strategy to improve hardness characteristics of monolithic $MoSi_2$. However, interfacial reaction products like (Nb, Mo)$SiO_2$ and $Nb_2Si_3$ formed at the interface of $Nb/MoSi_2$ and increased with fabricating temperature. $MoSi_2$ composites which a hole drilling was not possible by the conventional machining process, enhanced the capacity of ED-drilling by adding $NbSi_2$ relative to that of SiC or $ZrO_2$ reinforcements.

  • PDF

ED-drilling of WC-Co to Minimize Electrolytic Corrosion on a Workpiece Surface (방전드릴링 시 발생하는 초경합금의 표면전해부식 방지)

  • Song, Ki-Young;Chung, Do-Kwan;Park, Min-Soo;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.8
    • /
    • pp.47-54
    • /
    • 2009
  • In this study, a simple and effective method was proposed to minimize electrolytic corrosion on the workpiece during ED-drilling using water as a working fluid. The adhesion of a cover plate onto the surface of the workpiece was greatly effective for suppressing electrolytic corrosion during ED-drilling. The experiment revealed that the adhesion of the cover plate prevented corrosion without causing significant changes in machining characteristics. Using the machining method proposed in this paper, electrolytic-corrosion-free holes can be machined without change in the machinery system. By using corrosion-free hole as a start hole for wire EDM, a lead frame die with high quality was fabricated successfully.

Development of Machining Technology for Micro Dies and Molds (미세금형제작을 위한 가공기술개발)

  • 이응숙;신영재;강재훈;제태진;이재경;이현용;이상조;최헌종;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.1047-1050
    • /
    • 2000
  • As the progress of new industrial products or parts technology, the precise and fine machining technologies are needed more and more. Micro fabrication technology of these products are usally consisted of mechanical machining or MEMS technology. Direct machining by mechanical method is not applicable to mass production. MEMS technology also has several problems such as low mechanical strength, bad surface roughness and difficulty of 3 dimensional machining. In this study, we introduce several micro fabrication technology to make micro molds and dies and our project to develop these machining technology.

  • PDF

A Study on the Measurements of Sub-surface Residual Stress in the Field of Linear Stress Gradient (선형구배 응력장에서 표층의 잔류응력 측정에 관한 연구)

  • 최병길;전상윤;이택순
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1632-1642
    • /
    • 1992
  • When a blind hole of small diameter is drilled in the field of residual stress, strain relieved around the hole is function of magnitude of stress, patterns of stress distribution and hole geometry of diameter and depth. Relieved strain coefficients can be calculated from FEM analysis of relieved strain and actual stress. These relieved strain coefficients make it possible to measure residual stress which vary along the depth in the subsurface of stressed material. In this study, the calibration tests of residual stress measurement are carried out by drilling a hole incrementally on the cantilever or on the tensile test bar. Residual stresses can be determined from measured strains around a shallow hole by application of power series method. For the sake of reliable measurement of residual stress, much efforts should be done to measure relieved strains and hole depth more accurately comparing with conventional procedures of gage subject to the external load. Otherwise linear equations converting strains into stresses may yield erratic residual stresses because of ill-conditions of linear equations. With accurate measurements of relieved strains, residual stress even if varying along the depth can be measured. It is also possible to measure residual stress in the thin film of material by drilling a shallow hole.

Development of Ultrasonic Machine with Force Controlled Position Servo System (가공력 제어 위치 서보 시스템을 이용한 초음파 가공기의 개발)

  • 장인배;이승범;전병희
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.253-261
    • /
    • 2004
  • The machining technology for the brittle materials such as ceramics are applied to the fields of MEMS(micro electromechanical system) by the progress of new machining technologies such as Etching, Diamond machining, Micro drilling, EDM(Electro discharge machining), ECDM(Electro discharge machining), USM(Ultrasonic machining), LBM(Laser beam machining), EBM(Electron beam machining). Especially, the USM technology can be applied to the dieletric brittle materials such as silicon, borosilicate glass, silicon nitride, quartz and ceramics with high aspect ratio. The micro machining system with machining force controlled position servo is developed in this paper and the optimized ultrasonic machining algorithm is constructed by the force controlled position servo control. The load cell is adapted in the force measuring and the servo control algorithm, suit for the ultrasonic machining characteristics, is estabilished with using the PID auto-tunning functions at the PMAC system which is generally adapted in the field of robot industries. The precision force signal amplifier is constructed with high precision operational amplifier AD524. The vacuum adsorption chuck which is made of titanum and internal flow line is engraved, is used in the workpiece fixing. The mahining results by USM shows that there are some deviation between the force command and the actual machining force that the servo control algorithm should be applied in the machining procedures. Therefore, the constant force controlled position servo system is developed for the micro USM system and by the examination machining process in USM, the stable USM system is realized by tracking the average value of machining force.

Effects on Machining on Surface Residual Stress of SA 508 and Austenitic Stainless Steel (SA508 탄소강 및 오스테나이트 스테인리스강의 표면잔류응력에 미치는 기계가공효과)

  • Lee, Kyoung-Soo;Lee, Seong-Ho;Park, Chi-Yong;Yang, Jun-Seok;Lee, Jeong-Geun;Park, Jai-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.5
    • /
    • pp.543-547
    • /
    • 2011
  • Primary water stress corrosion cracking has occurred in dissimilar weld areas in nuclear power plants. Residual stress is a driving force in the crack. Residual stress may be generated by weld or surface machining. Residual stress due to surface machining depends on the machining method, e.g., milling, grinding, or EDM. The stress is usually distributed on or near the surface of the material. We present the measured residual stress for machining on SA 508 and austenitic stainless steels such as TP304 and F316. The residual stress can be tensile or compressive depending on the machining method. The depth and the magnitude of the residual stress depend on the material and the machining method.