• 제목/요약/키워드: ECV

검색결과 54건 처리시간 0.026초

황련아교탕(黃連阿膠湯)이 Free Cholesterol에 의한 혈관내피세포 손상에 미치는 영향 (Effect of Hwangryunagyotang Water Extract on Endothelial Cells by Free Cholesterol.)

  • 이소연;윤현덕;신오철;신유정;박치상
    • 대한한방내과학회지
    • /
    • 제27권3호
    • /
    • pp.589-602
    • /
    • 2006
  • Hwangryunagyotang is supposed to have significant effects on some sorts of cardiovascular diseases like atherosclerosis. For this study. ACAT inhibitor was put in LDLR -/- mice to derive free cholesterol from it. This was to examine the effectiveness of Hwangryunnagyotang on its protecting and recovering function with endothelial cells damaged by free cholesterol through experimental. The results reported below. Hwangryunagyotang suppressed the crystallization of reactive oxygen species in macrophages and the numbers of free cholesterol crystal plate structured and reduced fragmentation of nucleus in ECV 304 cell strain by ACAT inhibitor significantly. Hwangryunagyotang also suppressed the necrosis of tissue in LDLR -/- mice' (treated with ACAT inhibitor) inflammatory portion which is adjacent to aortic root, proximal aorta and carotid artery by immunohistochemistry and fluorescence microscopy. On the whole, Hwangryunagyotang suppressed the necrosis of endothelial cells and especially it's effcet for the necrosis of para-myocardial tissues by free cholesterol. With this result, I suggest Hwangryunagyotang might have protective and recovery effects on atherosclerosis, so we need to carry on this study henceforth clinically and experimentally as well.

  • PDF

주요 스프레이 국화 품종의 형태적 특성과 변이계수, 유전율 및 유전자 전이율 (Morphological Characteristics, and Coefficient of Variation, Heritability and Genetic Advance of Major Cultivars of Spray Chrysanthemum)

  • 심성임;임기병;김창길;정미영;김경민;정재동
    • 원예과학기술지
    • /
    • 제34권2호
    • /
    • pp.269-281
    • /
    • 2016
  • 절화용으로 재배중인 주요 스프레이 국화 10품종의 형태적 특성과 관련된 요인을 조사하였으며 이들 평균치를 이용하여 변이계수, 유전율 및 유전자 전이율 등의 통계학적 분석을 통하여 얻은 결과를 요약하면 다음과 같다. 형태적 특성을 보면 줄기의 길이 46.4-54,9cm, 줄기의 최대 직경 5.6-8.5mm, 줄기의 경도 $0.17-0.70kg{\cdot}m^{-2}$, 줄기의 생체중 7.5-17.5g, 줄기의 건물중 1.6-3.3g, 줄기의 생체중:건물중의 비율 15.9-23.1%, 줄기 내 엽수 8.4-12.2매, 줄기 내 엽면적 $17.8-37.8m^2$, 줄기 내 잎의 생체중 5.3-18.6g, 줄기 내 잎의 건물중 0.5-1.4g 줄기 내 잎의 생체중:건물중의 비율 7.6-11.5%, 화서의 길이 10.1-18.6cm, 화서의 생체중 7.3-26.7g, 화서의 건물중 1.2-2.8g, 화서의 생체중:건물중의 비율 10.4-17.1%, 화심 직경 8.2-13.3mm, 꽃잎 폭 5.7-14.0mm, 꽃잎 길이 12.9-33.1mm, 꽃잎 두께 $157.8-354.4{\mu}m$였으며 각 특성별 품종 간 DMRT와 LSD를 검정한 결과 고도의 유의차가 인정되었다. 변이계수, 표현 변이계수, 유전 변이계수는 줄기의 길이 4.79-5.15%로서 가장 낮았으며 엽면적 62.97-65.21%로 가장 높았으나 환경 또는 오차 변이계수는 엽면적 1.71%로 가장 낮았고 잎의 건물중 19.30%로 가장 높았다. 유전율은 줄기의 생체중:건물중의 비율 68.69%로 가장 낮았고 줄기 내 엽면적 99.67%로 가장 높았다. 유전자 전이는 줄기의 경도 0.30으로 가장 낮았고 화서 내 잎의 두께 156.65로 가장 높았으며 유전자 전이율은 줄기의 길이 9.17%로 가장 낮았으며 엽면적 134.27%로 가장 높았다. 이와 같이 위에서 언급한 높은 값을 나타내는 형질들은 부가적으로 유전자 작용에 영향을 미치게 되며 경종의 개량을 위해 만족할만한 선발 계획을 수립할 수 있을 것이다.

이공산(異功散)의 혈관신생(血管新生) 및 암전이(癌轉移) 억제효과(抑制效果)에 관한 연구(硏究) (The Study on the Process and Quality Control of Rhus Verniciflua Stokes Extract (Nexia))

  • 강창희;강희;신현규;심범상;김성훈;최승훈;안규석
    • 대한암한의학회지
    • /
    • 제11권1호
    • /
    • pp.41-54
    • /
    • 2006
  • Ekongsan (EKS) was expected to have inhibitory effects on angiogenesis, considering the fact that its constituents such as Ginseng Radix, Glycyrrhizae Radix and Citri Pericarpium were reported to inhibit angiogenesis. Moreover, recently several metabolites transformed by the human intestinal microflora were reported to enhance effectiveness compared to their crude drugs. Based on these data, this study was designed to confirm whether the EKS metabolites (EKS-M) can significantly exert the anti-angiogenic and anti-metastatic activites. Hence, with EKS and EKS-M, viability assay, proliferation assay, in vitro tube formation assay, gelatin zymogram assay, in vitro invasion assay were carried out. EKS showed less toxicity in ECV304 and HT1080 cells than EKS-M. EKS-M inhibited the proliferation of HT1080 cells by 30% at 200 ${\mu}g/m{\ell}$ and 42% at 400 ${\mu}g/m{\ell}$ respectively. Also, EKS-M degraded the tube network at 200 ${\mu}g/m{\ell}$. EKS and EKS-M inhibited the expression of MMP-9 at 200 and 400 ${\mu}g/m{\ell}$in HT1080 cells. EKS reduced the invasive activity of HT1080 cells through matrigel coated transfilter at the concentration of 200 ${\mu}g/m{\ell}$ more effectively than EKS-M. These data suggest that EKS and EKS-M has anti-angiogenic and anti-metastatic activities.

  • PDF

The Effect of Transformation on the Virulence of Streptococcus pneumoniae

  • Zhang Xue-Mei;Yin Yi-Bing;Zhu Dan;Chen Bao-De;Luo Jin-Yong;Deng Vi-Ping;Liu Ming-Fang;Chen Shu-Hui;Meng Jiang-Ping;Lan Kai;Huang Yuan-Shuai;Kang Ge-Fei
    • Journal of Microbiology
    • /
    • 제43권4호
    • /
    • pp.337-344
    • /
    • 2005
  • Although pneumococcus is one of the most frequently encountered opportunistic pathogen in the world, the mechanisms responsible for its infectiveness have not yet been fully understood. In this paper, we have attempted to characterize the effects of pneumococcal transformation on the pathogenesis of the organism. We constructed three transformation-deficient pneumococcal strains, which were designated as Nos. 1d, 2d, and 22d. The construction of these altered strains was achieved via the insertion of the inactivated gene, comE, to strains 1, 2 and 22. We then conducted a comparison between the virulence of the transformation-deficient strains and that of the wild-type strains, via an evaluation of the ability of each strain to adhere to endothelial cells, and also assessed psaA mRNA expression, and the survival of hosts after bacterial challenge. Compared to what was observed with the wild-type strains, our results indicated that the ability of all of the transformation-deficient strains to adhere to the ECV304 cells had been significantly reduced (p < 0.05), the expression of psaA mRNA was reduced significantly (p < 0.05) in strains 2d and 22d, and the median survival time of mice infected with strains Id and 2d was increased significantly after intraperitoneal bacterial challenge (p < 0.05). The results of our study also clearly indicated that transformation exerts significant effects on the virulence characteristics of S. pneumoniae, although the degree to which this effect is noted appears to depend primarily on the genetic background of the bacteria.