• Title/Summary/Keyword: ECG monitoring system

Search Result 187, Processing Time 0.024 seconds

Portable Electrocardiograph and Smart Device-based Heart Health Monitoring and Risk Notification System (휴대용 심전도 측정기와 스마트 기기 기반의 심건강 모니터링 및 위험도 알림 시스템)

  • Cho, Jinsoo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.73-78
    • /
    • 2013
  • This paper proposes a portable electrocardiograph and smart device-based heart health monitoring and risk notification system. The proposed system consists of a portable electrocardiograph and a smart device for a system user, and a web-based monitoring system for observers. This system can improve the convenience and efficiency of measurement by using a light-weight portable electrocardiograph and a smart device. In addition, any authorized person such as caregiver or family member who is not related to medical institution can monitor users'heart health in real-time using the web-based monitoring system. Therefore, a user and authorized remote observers can efficiently monitor and manage user's heart health in daily-life even without any medical institution's help, and can preemptively deal with any possible dangerous situations, such as degeneration of a cardiac disorder and sudden cardiac death.

The Development of Patient Monitoring System Using Microcomputer (마이크로컴퓨터를 이용한 환자감시장치의 개발)

  • Kim, N.H.;Park, Y.C.;You, S.K.;Kim, W.K;Park, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1280-1283
    • /
    • 1987
  • In this paper, we represent the development of microcomputer-based monitoring system which monitors patient's states-ECG, blood pressure, temperature and respiration. And since data acquisition and system controls are processed by microprocessor, this system improved the conventional method.

  • PDF

Fully Analog ECG Baseline Wander Tracking and Removal Circuitry using HPF Based R-peak Detection and Quadratic Interpolation

  • Nazari, Masoud;Rajeoni, Alireza Bagheri;Lee, Kye-Shin
    • Journal of Multimedia Information System
    • /
    • v.7 no.3
    • /
    • pp.231-238
    • /
    • 2020
  • This work presents a fully analog baseline wander tracking and removal circuitry using high-pass filter (HPF) based R-peak detection and quadratic interpolation that does not require digital post processing, thus suitable for compact and low power long-term ECG monitoring devices. The proposed method can effectively track and remove baseline wander in ECG waveforms corrupted by various motion artifacts, whereas minimizing the loss of essential features including the QRS-Complex. The key component for tracking the baseline wander is down sampling the moving average of the corrupted ECG waveform followed by quadratic interpolation, where the R-peak samples that distort the baseline tracking are excluded from the moving average by using a HPF based approach. The proposed circuit is designed using CMOS 0.18-㎛ technology (1.8V supply) with power consumption of 19.1 ㎼ and estimated area of 15.5 ㎟ using a 4th order HPF and quadratic interpolation. Results show SNR improvement of 10 dB after removing the baseline wander from the corrupted ECG waveform.

Characteristics of Pulse Wave Velocity by the Simultaneously Measured ECG Waveform and Hall Device Radial Artery Waveform (ECG 파형과 홀소자 맥진파형으로 동시 측정한 맥파전달속도 특성 연구)

  • Yoo, Jae-Young;Choi, Suel-Gi;Kim, Dam-Bee;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.4
    • /
    • pp.136-141
    • /
    • 2012
  • In the this research, two simultaneous peaks of radial artery pulse wave and ECG pulse wave measured by using clip-type pulsimeter and ECG were investigated in order to analyze pulse wave velocity. The measured value of a pulse wave velocity is about 5~7 m/s, it is proved one new method to measure an exact value of pulse wave velocity more than the typical biomedical signal monitoring system. This result implies that data measured by the oriental medical diagnosis apparatus as pulsimeter is clinically used in future.

Smart Remote Rehabilitation System Based on the Measurement of Heart Rate from ECG Sensor and Kinect Motion-Recognition (키넥트 모션인식과 ECG센서의 심박수 측정을 기반한 스마트 원격 재활운동 시스템)

  • Kim, Jong-Jin;Gwon, Seong-Ju;Lee, Young-Sook;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.69-77
    • /
    • 2015
  • The Microsoft Kinect is a motion sensing input device which is widely used for many motion recognition applications such as fitness, sports, and rehabilitation. Until now, most of remote rehabilitation systems with the Microsoft Kinect have allowed the user or patient to do rehabilitation or fitness by following the motion of a video screen. However in this paper we propose a smart remote rehabilitation system with the Microsoft Kinect motion sensor and a wearable ECG sensor which can allow patients to offer monitoring of the individual's performance and personalized feedback on rehabilitation exercises. The proposed noble smart remote rehabilitation is able to monitor and measure the state of the patient's condition during rehabilitation exercise, and transmits it to the prescriber. This system can give feedback to a prescriber, a doctor and a patient for improving and recovering motor performance. Thus, the efficient rehabilitation training service can be provided to patient in response to changes of patient's condition during exercise.

Implementation of a portable pulse oximeter for SpO2 using Compact Flash Interface (컴팩트 플래쉬 방식의 휴대용 산소포화도 측정 시스템 구현)

  • Lee, Han;Kim, Young-Kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.678-681
    • /
    • 2003
  • In this paper, we aims to develop a microcontroll er-based portable pulse oximeter using Compact Flash Interface. First, portable pulse oxineter system is designed to record 2 channel of biosignals simultaneously, including 1 channel of SpO$_2$ and 1 channel of pulse rate. It is very small and portable. Besides, the system makes it possible to measure a patients condition without an additional medical equipment. We tried to solve the problems generated by a patient's motion. That is, we added an analog circuit to a traditional pulse oximeter in order to eliminate the change of the base line. And we used 2D sector algorithm. As present, SpO$_2$ modules are completed. But there are still many further development needed in order to enhance the function. Especially, compact flash interface remains the most to complete. Second, ECG monitoring system uses almost same as present 3-lead ECG system. But we focus on the analog part, especially in filter. The proposed filter is composed of two parts. One is a filter to remove the power-line interface. The other is a filter to remove the baseline drift. A filter to remove the power-line and the baseline drift is necessarily used in the ECG system. The implemented filter have three features; minimizing the distortion in DC component, removing the harmonic component of power-line frequency. Using compact flash interface, we can easily transfer a patient's personal information and the measured signal data to a network based server environment. That means, it is possible to implement a patient's monitoring system with low cost.

  • PDF

Implementation of Wireless Realtime Monitoring System for Medical Information(ECG data) (의료 정보(심전도 데이터)를 위한 Wireless Realtime Monitoring System 구현)

  • 한민수;고성일;김양호;이강민;김영길
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.1
    • /
    • pp.75-82
    • /
    • 1999
  • This paper describes the implementation of wireless realtime monitoring system using modified CSMA/CA protocol. This system consists of wireless modem, central monitor, mobile station, DB server, and offer advantage of mobility, reduced installation time, long-term cost savings, and so on. And this system offers patient position pursuit service. Patient position pursuit service must be offered to deal with emergency which can be occured during patient movement. This paper proposes modified CSMA/CA protocol and patient position pursuit algorithm, implements wireless realtime monitoring system using it.

  • PDF

Study on Reusable Electrodes for Personal Electrocardiography

  • Kim, Jonghoon;Yoon, Gilwon
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.340-344
    • /
    • 2018
  • Electrodes are an important part of electrocardiography (ECG); disposable electrodes have been extensively used. However, personal ECG monitoring devices for Internet of Things applications require reusable electrodes. As there have been no systematic studies on the characteristics of reusable electrodes to date, we conducted this study to assess the performance and feasibility of electrodes with different materials. We built reusable electrodes using twelve different metallic materials, including commonly used copper, silver, zinc, plating materials, chemically inert titanium, stainless steel, and aluminum. Each electrode was fabricated to a size of $5{\times}10mm$. Their characteristics such as offset, baseline drift, stabilization time, and chemical inertness were compared. A personal ECG monitoring system was used to test the manufactured electrodes. The performances of the Ag, Cu, and Zn electrodes were better than the performances of other electrodes. However, these materials may not be used owing to the chemical changes that occur when the electrodes are in contact with the skin, such as discoloration and corrosion, which deteriorate their electrical characteristics. Titanium, stainless steel, and aluminum are chemically stable. The titanium electrode showed the best performance among the three, and it is our recommendation as a material for manufacturing reusable electrodes.

Development and Verification of the System for Heart Rate Detection During Exercise (운동 중 심박수 검출 시스템 개발 및 검증)

  • Jeon, Young-Ju;Shin, Seung-Chul;Jang, Yong-Won;Kim, Seung-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1688-1693
    • /
    • 2007
  • The aim of this paper is to develop and verify the system which can detect heart rate during exercise by using conductive fabric electrode and transportable measurement module. The experiment was performed under 4 conditions(resting, walking, jogging, running) and 18 subjects data are used. By using the ECG measurement system used in cardiac stress testing as reference value in order to verify the accuracy of the developed system, the relative error and correlation coefficient was calculated for each subject at every 3 seconds. The results have shown that the high correlation between the developed system and the reference system for detecting heart rate during exercise. Relative error and correlation coefficient are 2.27% and 0.9877, respectively. 7 subjects data are omitted in these calculations because of severe noises. Therefore, it is expected that this system could be used as a health monitoring system in ubiquitous environment in the future.

Implementation of a portable telemetry system based on wavelet transform. (웨이블릿 알고리즘을 적용한 휴대용 텔레미트리 시스템)

  • 박차훈;서희돈
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.113-116
    • /
    • 2000
  • In this paper presents the portable wireless ECG data detection and diagnosis system based on discreet wavelet transform. An algorithm based on wavelet transform suitable for real time implementation has been developed in order to detect ECG characteristics. In particular, QRS complex, S and T waves may be distinguished form noise, baseline drift or artifacts. Proposed telemetry system that a transmitting media using radio frequency(RF) for the middle range measurement of the physiological signals and receiving media using optical for electromagnetic interference problem. A standard hi-directional serial communication interface between the telemetry system and a personal computer or laptop, allows read-time controlling, diagnosing and monitoring of system. A portable telemetry system within a size. of 65${\times}$125${\times}$45mm consists of three parts: a digital signal processing part for physiological signal detect or diagnose, RF transmitter for data transfer and a optical receiver for command receive. Advantages of proposed telemetry system is wireless middle range(50m) FM transmission, reduce electromagnetic interference to a minimum. which enables a comfortable diagnosis system at home.

  • PDF