• Title/Summary/Keyword: ECBD

Search Result 2, Processing Time 0.02 seconds

ADVANCED DVI+

  • Kwon, Tae-Soon;Lee, S.T.;Euh, D.J.;Chu, I.C.;Youn, Y.J.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.727-734
    • /
    • 2012
  • A new advanced safety feature of DVI+ (Direct Vessel Injection Plus) for the APR+ (Advanced Power Reactor Plus), to mitigate the ECC (Emergency Core Cooling) bypass fraction and to prevent switching an ECC outlet to a break flow inlet during a DVI line break, is presented for an advanced DVI system. In the current DVI system, the ECC water injected into the downcomer is easily shifted to the broken cold leg by a high steam cross flow which comes from the intact cold legs during the late reflood phase of a LBLOCA (Large Break Loss Of Coolant Accident)For the new DVI+ system, an ECBD (Emergency Core Barrel Duct) is installed on the outside of a core barrel cylinder. The ECBD has a gap (From the core barrel wall to the ECBD inner wall to the radial direction) of 3/25~7/25 of the downcomer annulus gap. The DVI nozzle and the ECBD are only connected by the ECC water jet, which is called a hydrodynamic water bridge, during the ECC injection period. Otherwise these two components are disconnected from each other without any pipes inside the downcomer. The ECBD is an ECC downward isolation flow sub-channel which protects the ECC water from the high speed steam crossflow in the downcomer annulus during a LOCA event. The injected ECC water flows downward into the lower downcomer through the ECBD without a strong entrainment to a steam cross flow. The outer downcomer annulus of the ECBD is the major steam flow zone coming from the intact cold leg during a LBLOCA. During a DVI line break, the separated DVI nozzle and ECBD have the effect of preventing the level of the cooling water from being lowered in the downcomer due to an inlet-outlet reverse phenomenon at the lowest position of the outlet of the ECBD.

Effect of Dietary Supplementation of Fresh Water Algae Euglena on the Performance and Egg Quality and Fatty Acid Composition of Egg Yolk in Laying Hens (산란계에서 담수녹조류 Euglena의 첨가사료가 생산성 및 계란의 품질과 지방산 조성에 미치는 영향)

  • Choi S. W.;Park I. K.;Park B. S.
    • Korean Journal of Poultry Science
    • /
    • v.31 no.4
    • /
    • pp.283-291
    • /
    • 2004
  • Feeding trials were conducted with Euglena strains grown under different media. The effect of supplementation of Euglena on the laying performance, egg quality and fatty acid composition of egg yolk was studied. In experiment I, two hundred eighty 32-wk-old ISA Brown layers were randomly assigned to seven dietary treatments for 4 wks. Each treatment consisted of 4 replications with 10 birds each housed in two birds cages. Control diet was formulated to have $17\%$ CP and 2,750 kcal ME/kg. Euglena gracilis Z. (EG) was added to control diet at the level of 0.25, 0.5, $1.0\%$ and Euglena gracilis Z. bleached and DHA enriched (EGBD; a strain mutated by streptomycin and cultivated in DHA enriched medium) at the level of 0.5, 1.0, $2.0\%$ in the diet. In experiment 2, three hundred 84-wk-old ISA brown layers were randomly assigned to five dietary treatments: T1; Control, T2; T1 + EGBD $0.5\%$, T3; T1 + Euglena gracilis Z. DHA enriched (EGD; cultivated in DHA enriched medium) $0.5\%$, T4; T1 + EGD $1.0\%$, T5; T1 + EGD $2.0\%$. Each treatment had 5 replication of 12 birds each housed in two birds cages. In experiments 1 and 2, Euglena suppplementation did not significantly affect egg production but increased egg weight and feed intake. In experiment 1, EG was more effective in increasing egg yolk color score than EGBD. Egg yolk color of EG $1\%$ treatment showed the highest score. EGBD supplementation increased DHA concentration of egg yolk. EGBD $2\%$ treatment showed the highest DHA and the lowest palmitic and stearic acids concentration in the egg yolk. In experiment 2, EGBD $0.5\%$ treatment showed highest DHA level in egg yolk (P<0.05). It was conducted that EGBD is a single cell protein source rich in DHA, that can be used to produce DHA enriched eggs.