• Title/Summary/Keyword: E2F binding site

Search Result 19, Processing Time 0.025 seconds

Effect of E-box and E2F Binding Site on Transcriptional Activity in MCM Promoter (MCM promoter에서 E-box와 E2F 결합부위가 전사활성에 미치는 영향)

  • 권현주
    • Journal of Life Science
    • /
    • v.14 no.5
    • /
    • pp.732-740
    • /
    • 2004
  • MCM proteins are essential for eukaryotic DNA replication, playing roles in the initiation and elongation of DNA replication. MCM proteins expression is much higher in malignant tissues than normal tissues. Several reports have indicated the usefulness of MCM proteins as markers of cancer cells in histopathological diagnosis. However, the cause of enhanced expression of MCM proteins in cancer cells remain to be clarified. The purpose of this study is to examine the relative transcriptional activities of human mcm gene promoters in cancer and normal cells. The minimal promoter region required for transcription of a luciferase reporter gene was contained an E-box and one E2F site. In addition, luciferase activities from mcm7 and mcm2 promoter/luciferase gene reporter constructs were significantly increased in cancer cells at 8 times compared with normal cells. E-box and E2F binding site in the promoter of mcm genes are responsible for different mechanism of transcription regulation on the cellular environment.

Identification of Oligosaccharides in Human Milk Bound onto the Toxin A Carbohydrate Binding Site of Clostridium difficile

  • Nguyen, Thi Thanh Hanh;Kim, Jong Woon;Park, Jun-Seong;Hwang, Kyeong Hwan;Jang, Tae-Su;Kim, Chun-Hyung;Kim, Doman
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.659-665
    • /
    • 2016
  • The oligosaccharides in human milk constitute a major innate immunological mechanism by which breastfed infants gain protection against infectious diarrhea. Clostridium difficile is the most important cause of nosocomial diarrhea, and the C-terminus of toxin A with its carbohydrate binding site, TcdA-f2, demonstrates specific abolishment of cytotoxicity and receptor binding activity upon diethylpyrocarbonate modification of the histidine residues in TcdA. TcdA-f2 was cloned and expressed in E. coli BL21 (DE3). A human milk oligosaccharide (HMO) mixture displayed binding with TcdA-f2 at 38.2 respond units (RU) at the concentration of 20 μg/ml, whereas the eight purified HMOs showed binding with the carbohydrate binding site of TcdA-f2 at 3.3 to 14 RU depending on their structures via a surface plasma resonance biosensor. Among them, Lacto-N-fucopentaose V (LNFPV) and Lacto-N-neohexaose (LNnH) demonstrated tight binding to TcdA-f2 with docking energy of −9.48 kcal/mol and −12.81 kcal/mol, respectively. It displayed numerous hydrogen bonding and hydrophobic interactions with amino acid residues of TcdA-f2.

Quantitative Structure-Activity Relationships in MAO-Inhibitor~' 2-Phenylcyclopropylarnines: Insights into the Topography of MAO-A and MAO-B

  • Kang, Gun-Il;Hong, Suk-Kil
    • Archives of Pharmacal Research
    • /
    • v.13 no.1
    • /
    • pp.82-96
    • /
    • 1990
  • Ten (E)-and (Z)-isomers of 2-phenylcyclopropylamine (PCA), 1-Me PCA, 2-Me-PCA, N-Me-PCA, and N, N-diMe PCA and fifteen o-. m-, p- isomers of (E) PCA with substituents of Me, Cl, F, OMe, OH were synthesized in this laboratory and tested for the inhibition of rat brain mitochondrial MAO-A and MAO-B. The effects of substituents, their positions, and stereochemistry on the inhibition were assessed for the compounds with substituents at cyclopropyl and amino groups and QSAR analyses were performed using the potency data of ring-substituted compounds. The best correlated QSAR equations are as follows : pI$_{50}$ = 0.804 $\pi^2$-0.834 Blo-1.069 Blm + 0.334 Lp-1.709 HDp +7.897 (r = 0.945, s =0.211, F = 16.691, p = 0.000) for the inhibition of MAO-A;PI$_{50}$= 1.815$\pi$-0.825 $\pi^2$-1.203R + 0.900 Es$^2$ + 0.869 Es$^3$ + 0.796 Es$^4$-0.992 HDp + 0.562 HAo + 3.893 (r = 0.982, s =0.178, F = 23.351, p = 0.000) for the inhibition of MAO-B. Based on the potency difference between stereoisomers of cyclopropylamine-modified compounds and an QSAR cavity near para position, two hydrophobic carities interacting with Me group, a hydrophobic site near para position, and an amino group binding site and that in addition to the same two hydrophotic cavities, hydrophotic area, steric boundaries, hydrogen-acceptor site, and amino group binding site, another steric boundary near para position and a hydrogen donating site near ortho position constitute active sites of MAO-B.

  • PDF

An engineered PD-1-based and MMP-2/9-oriented fusion protein exerts potent antitumor effects against melanoma

  • Wei, Mulan;Liu, Xujie;Cao, Chunyu;Yang, Jianlin;Lv, Yafeng;Huang, Jiaojiao;Wang, Yanlin;Qin, Ye
    • BMB Reports
    • /
    • v.51 no.11
    • /
    • pp.572-577
    • /
    • 2018
  • Recent studies showed that the PD-1/PD-L1 checkpoint blockade is a dramatic therapy for melanoma by enhancing antitumor immune activity. Currently, major strategies for the PD-1/PD-L1 blockade have mainly focused on the use of antibodies and compounds. Seeking an alternative approach, others employ endogenous proteins as blocking agents. The extracellular domain of PD-1 (ePD1) includes the binding site with PD-L1. Accordingly, we constructed a PD-1-based recombinantly tailored fusion protein (dFv-ePD1) that consists of bivalent variable fragments (dFv) of an MMP-2/9-targeted antibody and ePD1. The melanoma-binding intensity and antitumor activity were also investigated. We found the intense and selective binding capability of the protein dFv-ePD1 to human melanoma specimens was confirmed by a tissue microarray. In addition, dFv-ePD1 significantly suppressed the migration and invasion of mouse melanoma B16-F1 cells, and displayed cytotoxicity to cancer cells in vitro. Notably, dFv-ePD1 significantly inhibited the growth of mouse melanoma B16-F1 tumor cells in mice and in vivo fluorescence imaging showed that dFv-ePD was gradually accumulated into the B16-F1 tumor. Also the B16-F1 tumor fluorescence intensity at the tumor site was stronger than that of dFv. This study indicates that the recombinant protein dFv-ePD1 has an intensive melanoma-binding capability and exerts potent therapeutic efficacy against melanoma. The novel format of the PD-L1-blocked agent may play an active role in antitumor immunotherapy.

A Functional SNP in the MDM2 Promoter Mediates E2F1 Affinity to Modulate Cyclin D1 Expression in Tumor Cell Proliferation

  • Yang, Zhen-Hai;Zhou, Chun-Lin;Zhu, Hong;Li, Jiu-Hong;He, Chun-Di
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3817-3823
    • /
    • 2014
  • Background: The MDM2 oncogene, a negative regulator of p53, has a functional polymorphism in the promoter region (SNP309) that is associated with multiple kinds of cancers including non-melanoma skin cancer. SNP309 has been shown to associate with accelerated tumor formation by increasing the affinity of the transcriptional activator Sp1. It remains unknown whether there are other factors involved in the regulation of MDM2 transcription through a trans-regulatory mechanism. Methods: In this study, SNP309 was verified to be associated with overexpression of MDM2 in tumor cells. Bioinformatics predicts that the T to G substitution at SNP309 generates a stronger E2F1 binding site, which was confirmed by ChIP and luciferase assays. Results: E2F1 knockdown downregulates the expression of MDM2, which confirms that E2F1 is a functional upstream regulator. Furthermore, tumor cells with the GG genotype exhibited a higher proliferation rate than TT, correlating with cyclin D1 expression. E2F1 depletion significantly inhibits the proliferation capacity and downregulates cyclin D1 expression, especially in GG genotype skin fibroblasts. Notably, E2F1 siRNA effects could be rescued by cyclin D1 overexpression. Conclusion: Taken together, a novel modulator E2F1 was identified as regulating MDM2 expression dependent on SNP309 and further mediates cyclin D1 expression and tumor cell proliferation. E2F1 might act as an important factor for SNP309 serving as a rate-limiting event in carcinogenesis.

A study on the crystallographic and magnetic Properties of Ce doped Garnet (Ce이 치환된 YIG garnet의 결정학적 및 자기적 성질 연구)

  • Kum, Jun-Sig;Kim, Sam-Jin;Shim, In-Bo;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.1
    • /
    • pp.46-50
    • /
    • 2004
  • Compounds of $Y_{3-x}Ce_{x}Fe{5}O_{12}$(x=0.0, 0.1, 0.2, and 0.3) were prepared using the sol-gel method. The XRD measurements show that these samples have only a single phase of the garnet structure regardless of the amount of Ce substitution. The lattice constants of x = 0.0 and x = 0.3 were found to be a$_0$ = 12.3758 ${\pm}$0.0005 ${\AA}$ and 12.4062 ${\pm}$0.0005 ${\AA}$, respectively. The lattice constant increases linearly with increasing Ce concentration. The saturation magnetization was not changed flirty, with increasing Ce concentration, but coercivity decreased form 18.3 Oe to 5.8 Oe as x increased form x = 0.0 to x = 0.1. Mossbauer spectra of $Y_{3-x}Ce_{x}Fe{5}O_{12}$ were measured at various absorber temperatures from 13 K to Neel temperature. The Mossbauer spectra were fitted by least-squares technique with two subpatterns of Fe sites in the structure and corresponding to the 16a and 24d site. The temperature dependence of the magnetic hyperfine field in $^{57}$/Fe nuclei at the tetrahedral 240 and octahedral 16a sites were analyzed based on the Neel theory of ferrirnagnetism. The result of the Debye temperatures indicated that the inter-atomic binding force for the 24d site was larger than that for the 16a site.

Photodecomposition of Concentrated Ammonia over Nanometer-sized TiO2, V-TiO2, and Pt/V-TiO2 Photocatalysts

  • Choi, Hyung-Joo;Kim, Jun-Sik;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.581-588
    • /
    • 2007
  • To enhance the photodecomposition of concentrated ammonia into N2, Pt/V-TiO2 photocatalysts were prepared using solvothermal and impregnation methods. Nanometer-sized particles of 0.1, 0.5 and 1.0 mol% V-TiO2 were prepared solvothermally, and then impregnated with 1.0 wt% Pt. The X-ray diffraction (XRD) peaks assigned to V2O5 at 30.20 (010) and Pt metal at 39.80 (111) and 46.20 (200) were seen in the 1.0 wt% Pt/ 10.0 mol% V-TiO2. The particle size increased in the order: pure TiO2, V-TiO2 and Pt/V-TiO2 after thermal treatment at 500 °C, while their surface areas were in the reverse order. On X-ray photoelectron spectroscopy (XPS), the bands assigned to the Ti2p3/2 and Ti2p1/2 of Ti4+-O were seen in all the photocatalysts, and the binding energies increased in the order: TiO2 < Pt/V-TiO2 < V-TiO2. The XPS bands assigned to the V2p3/2 (517.85, 519.35, and 520.55 eV) and V2p1/2 (524.90 eV) in the V3+, V4+ and V5+ oxides appeared over V-TiO2, respectively, while the band shifted to a lower binding energy with Pt impregnation. The Pt components of Pt/ V-TiO2 were identified at 71.60, 73.80, 75.00 and 76.90 eV, which were assigned to metallic Pt 4f7/2, PtO 4f7/2, PtO2 4f7/2, and PtO 4f5/2, respectively. The UV-visible absorption band shifted closer towards the visible region of the spectrum in V-TiO2 than in pure TiO2 and; surprisingly, the Pt/V-TiO2 absorbed at all wavelengths from 200 to 800 nm. The addition of vanadium generated a new acid site in the framework of TiO2, and the medium acidic site increased with Pt impregnation. The NH3 decomposition increased with the amount of vanadium compared to pure TiO2, and was enhanced with Pt impregnation. NH3 decomposition of 100% was attained over 1.0 wt% Pt/1.0 mol% V-TiO2 after 80 min under illumination with 365 nm light, although about 10% of the ammonia was converted into undesirable NO2 and NO. Various intermediates, such as NO2, -NH2, -NH and NO, were also identified in the Fourier transform infrared (FT-IR) spectra. From the gas chromatography (GC), FT-IR and GC/mass spectroscopy (GC/MS) analyses, partially oxidized NO and NO2 were found to predominate over V-TiO2 and pure TiO2, respectively, while both molecules were reduced over Pt/V-TiO2.

Construction and Characterization of an Anti-Hepatitis B Virus preS1 Humanized Antibody that Binds to the Essential Receptor Binding Site

  • Wi, Jimin;Jeong, Mun Sik;Hong, Hyo Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1336-1344
    • /
    • 2017
  • Hepatitis B virus (HBV) is a major cause of liver cirrhosis and hepatocellular carcinoma. With recent identification of HBV receptor, inhibition of virus entry has become a promising concept in the development of new antiviral drugs. To date, 10 HBV genotypes (A-J) have been defined. We previously generated two murine anti-preS1 monoclonal antibodies (mAbs), KR359 and KR127, that recognize amino acids (aa) 19-26 and 37-45, respectively, in the receptor binding site (aa 13-58, genotype C). Each mAb exhibited virus neutralizing activity in vitro, and a humanized version of KR127 effectively neutralized HBV infection in chimpanzees. In the present study, we constructed a humanized version (HzKR359-1) of KR359 whose antigen binding activity is 4.4-fold higher than that of KR359, as assessed by competitive ELISA, and produced recombinant preS1 antigens (aa 1-60) of different genotypes to investigate the binding capacities of HzKR359-1 and a humanized version (HzKR127-3.2) of KR127 to the 10 HBV genotypes. The results indicate that HzKR359-1 can bind to five genotypes (A, B, C, H, and J), and HzKR127-3.2 can also bind to five genotypes (A, C, D, G, and I). The combination of these two antibodies can bind to eight genotypes (A-D, G-J), and to genotype C additively. Considering that genotypes A-D are common, whereas genotypes E and F are occasionally represented in small patient population, the combination of these two antibodies might block the entry of most virus genotypes and thus broadly neutralize HBV infection.

Sequencing of the RSDA Gene Encoding Raw Starch-Digesting $\alpha$-Amylase of Bacillus circulans F-2: Identification of Possible Two Domains for Raw Substrate-Adsorption and Substrate-Hydrolysis

  • Kim, Cheorl-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.1
    • /
    • pp.56-65
    • /
    • 1992
  • The complete nucleotide sequence of the Bacillus circulans F-2 RSDA gene, coding for raw starch digesting a-amylase (RSDA), has been determined. The RSDA structure gene consists of an open reading frame of 2508 bp. Six bp upstream of the translational start codon of the RSDA is a typical gram-positive Shine-Dalgarno sequence and the RSDA encodes a preprotein of 836 amino acids with an Mr of 96, 727. The gene was expressed from its own regulatory region in E. coli and two putative consensus promoter sequences were identified upstream of a ribosome binding site and an ATG start codon. Confirmation of the nucleotide sequence was obtained and the signal peptide cleavage site was identified by comparing the predicted amino acid sequence with that derived by N-terminal analysis of the purified RSDA. The deduced N-terminal region of the RSDA conforms to the general pattern for the signal peptides of secreted prokaryotic proteins. The complete amino acid sequence was deduced and homology with other enzymes was compared. The results suggested that the Thr-Ser-rich hinge region and the non-catalytic domain are necessary for efficient adsorption onto raw substrates, and the catalytic domain (60 kDa) is necessary for the hydrolysis of substrates, as suggested in previous studies (8, 9).

  • PDF

Ca2+ Sensitivity of Anoctamin 6/TMEM16F Is Regulated by the Putative Ca2+-Binding Reservoir at the N-Terminal Domain

  • Roh, Jae Won;Hwang, Ga Eun;Kim, Woo Kyung;Nam, Joo Hyun
    • Molecules and Cells
    • /
    • v.44 no.2
    • /
    • pp.88-100
    • /
    • 2021
  • Anoctamin 6/TMEM16F (ANO6) is a dual-function protein with Ca2+-activated ion channel and Ca2+-activated phospholipid scramblase activities, requiring a high intracellular Ca2+ concentration (e.g., half-maximal effective Ca2+ concentration [EC50] of [Ca2+]i > 10 μM), and strong and sustained depolarization above 0 mV. Structural comparison with Anoctamin 1/TMEM16A (ANO1), a canonical Ca2+-activated chloride channel exhibiting higher Ca2+ sensitivity (EC50 of 1 μM) than ANO6, suggested that a homologous Ca2+-transferring site in the N-terminal domain (Nt) might be responsible for the differential Ca2+ sensitivity and kinetics of activation between ANO6 and ANO1. To elucidate the role of the putative Ca2+-transferring reservoir in the Nt (Nt-CaRes), we constructed an ANO6-1-6 chimera in which Nt-CaRes was replaced with the corresponding domain of ANO1. ANO6-1-6 showed higher sensitivity to Ca2+ than ANO6. However, neither the speed of activation nor the voltage-dependence differed between ANO6 and ANO6-1-6. Molecular dynamics simulation revealed a reduced Ca2+ interaction with Nt-CaRes in ANO6 than ANO6-1-6. Moreover, mutations on potentially Ca2+-interacting acidic amino acids in ANO6 Nt-CaRes resulted in reduced Ca2+ sensitivity, implying direct interactions of Ca2+ with these residues. Based on these results, we cautiously suggest that the net charge of Nt-CaRes is responsible for the difference in Ca2+ sensitivity between ANO1 and ANO6.