• Title/Summary/Keyword: E. coli eKT-53

Search Result 5, Processing Time 0.016 seconds

Characterization of Heat-Stable Enterotoxin of Enterotoxigenic Escherichia coli eKT-53 (장독성 대장균 eKT-53균주의 내열성 장독소의 성질)

  • 도대홍;김교창;김도영
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.6
    • /
    • pp.621-628
    • /
    • 1991
  • Heat-stable enterotoxin(ST) from enterotoxigenic E. coli eKT-53($ST^{+}\;LT^{-}$, transformant from isolate KM-7) that was produced in succinate salts medium. The culture supernatant(crude ST) was purifed by mulitpled steps and investigated some characterization of the ST. The heatstability of purified ST activity was completely lost by treating at $100^{\circ}C$ for 30minutes. ST activity was lost by treatment at pH 1 and 12 conditions, while the activity was not reduced by treatment at pH 2~10, and then the ${\alpha}-amylase$ and pepsin was not decreased activity but disulfide reducing agnets was lost the activity. The molecular weight of the purified ST was approximately 4,200, the isoelectric point was about 4.0.

  • PDF

Molecular Cloning and Expression of Heat-stable Enterotoxin Gene from Swine Enterotoxigenic Escherichia coli (돼지에서 유래한 병원성 대장균의 내열성 장독소 생산유전자의 Cloning 및 발현)

  • 김교창;도대흥
    • Journal of Food Hygiene and Safety
    • /
    • v.6 no.3
    • /
    • pp.147-155
    • /
    • 1991
  • Enterotoxigenic E. coli is one of the major causative agents of the infantile diarrhea and traveler's diarrhea. The heat-stable enterotoxin(ST) is thought to be a virulence factor in the pathogenesis of the diarrhea and to be a maker for identification of the enterotoxingeic E. coli from non pathogenic E. coli. The isolate of enterotoxigenlc E. coli was isolated from swine during 1989 year(from 5 to 10 month) in the Kyong-gi and Chung-Cheong provinces, and three strains(KM-4, KM-7 and KM-12) was selected from 189 isolates of ST producing E. coli. The detection of a ST produced of the isolated E. coli was performed by the infant mouse assay(IMA). This study was designed to know optimal conditions for the production of the ST and the molecular properties of plasmids of the enterotoxigenic E. coli. Amount of ST produced were the most at initial pH 8.5~9.0 of succinate salts medium culture. The cultural time of the same medium was accumulated the highest level of ST was at the 14 to 16 hours, and then stationary phase was at the 20 hours. From this experiment the KM-7 strain was selected among ST producing strains by IMA. Partial plasmid-curing experiment was done to select plasmid encoding for ST among other plasmids and then comparing the plasmid pattern of ST producing strain(KM-7) with those of other ST non-producing strains, it is found that ST gene exists on the about 80 Kbp plasmid. Each fragment of this plasmid digested with EcoRl was ligated to vector pBR 322 and transformed into E. coli K-12. A clone producing ST(eKT 53) was selected by IMA. The EcoRl digestion pattern of the isolated plasmid(pKD 37) from the ST producing clone it is indicated that the size of the inserted fragment in eKT 53 strain is 16 Kbp. The cultured supernatant of eKT 53 strain was positive result of ST production in IMA.

  • PDF

Purification of Heat-Stable Enterotoxin of Enterotoxigenic Escherichia coli eKT-53 (장독성 대장균 eKT-53 균주의 내열성 장독소 정제)

  • Do, Dea-Hong;Kim, Kyo-Chang;Kim, Do-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.1
    • /
    • pp.76-83
    • /
    • 1992
  • Enterotoxigenic E. coli is one of the major causative agents of the infantile diarrhea and traveler's diarrhea. The heat-stable enterotoxin (ST) is thought to be a virulence factor in the pathogenesis of the diarrhea and to be a maker for identification of the enterotoxigenic E. coli from non pathogenic E. coli. ST producing E. coli KM-7 strain was isolated from the swine and molecular cloning of ST gene of KM-7 strain. Transformant eKT-53 $(ST^+,\;LT^-)$ was selected by infant mouse assay (IMA). The culture supernatant of eKT-53 strain was performed purification by multipled steps. The culture supernatant (crude ST) was purified by sequentially applying batch adsorption chromatography on Amberlite XAD-2 resin, ion exchange chromatography on DEAE-Sephacel anion exchanger, gel filtration chromatography on Bio-Gel P-6 and preparative polyacrylamide slab gel electrophoresis. About 113-fold purification was achieved with a yield of about 11% of crude ST and the minimum effective dose(MED) of this purified ST was about 2.8ng in IMA. Homogeneity of purified ST was demonstrated by showing a single band in analytical SDS polyacrylamide disc gel electrophoresis.

  • PDF

Improvement of 4-chlorobiphenyl degradation bya recombinant strain, pseudomonas sp. DJ12-C

  • Kim, Ji-Young;Kim, Young-Chang;You, Lim-Jai;Lee, Ki-Sung;Ok, Ka-Jong;Hee, Min-Kyung;Kim, Chi-Kyung
    • Journal of Microbiology
    • /
    • v.35 no.1
    • /
    • pp.53-60
    • /
    • 1997
  • Pseudomonas sp. P20 and Pseudomonas sp. DJ-12 isolated from the polluted environment are capable of degrading biphenyl and 4-chlorobiphenyl (4CB) to produce benzoic acid and 4-chlorobenzoic acid (4CBA) respectively, by pcbABCD-encoded enzymes. 4CBA can be further degraded by Pseudomonas sp. DJ-12, but not by Pseudomonas sp P20. However, the meta-cleavage activities of 2, 3-dihydroxybiphenyl (2, 3-DHBP) and 4-chloro-2, 3-DHBP dioxygenases (2, 3-DHBD) encoded by pcbC in Pseudomonas sp. P20 were stronger than Pseudomonas sp. DJ-12. In this study, the pcbC gene encoding 2, 3-DHBD was cloned from the genomic DNA of Pseudomonas sp. P20 by using pKT230. A hybrid plasmid pKK1 was constructed and E. coli KK1 transformant was selected by transforming the pKK1 hybrid plasmid carrying pcbC into E. coli XL1-Blue. By transferring the pKK1 plasmide of E. coli KK1 into Pseudomonas sp. DJ-12 by conjugation, a recombinant strain Pseudomonas sp. P20, Pseudomonas sp. DJ-12, and the recombinant cell assay methods. Pseudomonas sp. DJ12-C readily degraded 4CB and 2, 3-DHBP to produce 2-hydroxy-6-oxo-6-phenylhexa-2, 4-dienoic acid (HOPDA), and the resulting 4CBA and benzoic acid were continuously catabolized. Pseudomonas sp. DJ12-C degraded 1 mM 4CB completely after incubation for 20 h, but Pseudomonas sp. P20 and Pseudomonas sp. DJ-12 showed only 90% and Pseudomonas sp. DJ-12 had, but its degradation activity to 2, 3-DHBP, 3-methylcatechol, and catechol was improved.

  • PDF

Local Shape Analysis of the Hippocampus using Hierarchical Level-of-Detail Representations (계층적 Level-of-Detail 표현을 이용한 해마의 국부적인 형상 분석)

  • Kim Jeong-Sik;Choi Soo-Mi;Choi Yoo-Ju;Kim Myoung-Hee
    • The KIPS Transactions:PartA
    • /
    • v.11A no.7 s.91
    • /
    • pp.555-562
    • /
    • 2004
  • Both global volume reduction and local shape changes of hippocampus within the brain indicate their abnormal neurological states. Hippocampal shape analysis consists of two main steps. First, construct a hippocampal shape representation model ; second, compute a shape similarity from this representation. This paper proposes a novel method for the analysis of hippocampal shape using integrated Octree-based representation, containing meshes, voxels, and skeletons. First of all, we create multi-level meshes by applying the Marching Cube algorithm to the hippocampal region segmented from MR images. This model is converted to intermediate binary voxel representation. And we extract the 3D skeleton from these voxels using the slice-based skeletonization method. Then, in order to acquire multiresolutional shape representation, we store hierarchically the meshes, voxels, skeletons comprised in nodes of the Octree, and we extract the sample meshes using the ray-tracing based mesh sampling technique. Finally, as a similarity measure between the shapes, we compute $L_2$ Norm and Hausdorff distance for each sam-pled mesh pair by shooting the rays fired from the extracted skeleton. As we use a mouse picking interface for analyzing a local shape inter-actively, we provide an interaction and multiresolution based analysis for the local shape changes. In this paper, our experiment shows that our approach is robust to the rotation and the scale, especially effective to discriminate the changes between local shapes of hippocampus and more-over to increase the speed of analysis without degrading accuracy by using a hierarchical level-of-detail approach.