• Title/Summary/Keyword: E. coli RpiA

Search Result 2, Processing Time 0.017 seconds

Crystal Structures of Substrate and Inhibitor Complexes of Ribose 5-Phosphate Isomerase A from Vibrio vulnificus YJ016

  • Kim, Tae Gyun;Kwon, Taek Hun;Min, Kyoungin;Dong, Mi-Sook;Park, Young In;Ban, Changill
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.99-103
    • /
    • 2009
  • Ribose-5-phosphate isomerase A (RpiA) plays an important role in interconverting between ribose-5-phosphate (R5P) and ribulose-5-phosphate in the pentose phosphate pathway and the Calvin cycle. We have determined the crystal structures of the open form RpiA from Vibrio vulnificus YJ106 (VvRpiA) in complex with the R5P and the closed form with arabinose-5-phosphate (A5P) in parallel with the apo VvRpiA at $2.0{\AA}$ resolution. VvRpiA is highly similar to Escherichia coli RpiA, and the VvRpiA-R5P complex strongly resembles the E. coli RpiA-A5P complex. Interestingly, unlike the E. coli RpiA-A5P complex, the position of A5P in the VvRpiA-A5P complex reveals a different position than the R5P binding mode. VvRpiA-A5P has a sugar ring inside the binding pocket and a phosphate group outside the binding pocket: By contrast, the sugar ring of A5P interacts with the Asp4, Lys7, Ser30, Asp118, and Lys121 residues; the phosphate group of A5P interacts with two water molecules, W51 and W82.

Characterization of C-P Lyase gene cluster by in vivo $^{31}$ P-NMR spectroscopy

  • Lee, Ki-Sung;Kwak, In-Young
    • Journal of Microbiology
    • /
    • v.33 no.4
    • /
    • pp.328-333
    • /
    • 1995
  • $\^$31/ P-NMR experiment was performed to detect phophonates (Pn) utilization and degradation in the several different C-P lyase mutants of E. coli and in E. aerogenes and the recombinants. The relative peak intensity (RPI) for the standard samples of 0.5 mM methylphosphonate (MPn) and 1.0 mM aminoethylphosphonate in glucose-MOPS medium showed 0.5 : 1.0 ratio. In the case of BW14329 (.DELTA.phnC-P, .delta.phoA), RPI did not change significantly after 24 hrs culturing, which means it nearly could not utilize Pn. In vivo $\^$31/ P-NMR spectrum of E. aerogens (BWKL 16627) during 3 hrs starvation showed two intense peaks at 0-2 ppm and at near-10 ppm which indicate intracellular orthophosphate (Pi) and pyrophosphate (PPi), respectively. Both of them might be released by degradation of inorganic polyphosphate pool. When MPn is supplied to the medium as an unique P source, Pi content in the cell has the constant, but PPi seems to be slightly decreased. Recombinants (BWKL 16954) grew slower than E. aerogenes in the glucose-MOPS media with various P sources. In vivo $\^$31/ P-NMR spectrum of recombinant did not show any intense signal in the cell. Surprisingly, under the cultivation adding with MPn, a few intense peaks in the region of Pi AND phospate monoester were detected.

  • PDF