• Title/Summary/Keyword: E-type Disperse Dye

Search Result 5, Processing Time 0.016 seconds

Combination Dyeing of Triacetate/PET Blended Fabric with Disperse Dye (트리아세테이트/PET 혼방 직물의 분산염료 혼합염색)

  • Kim, Myoung Ok;Lee, Jung-Soon
    • Science of Emotion and Sensibility
    • /
    • v.19 no.4
    • /
    • pp.3-12
    • /
    • 2016
  • The aim of this study is to find the optimal combination dyeing condition for the enhancement of dye uptake and union dyeing of the composite material fabric made of triacetate and quick drying PET blended yarn. For the experiment, fabrics were one-bath combination dyed using the mixed dye of E-type disperse dye(C.I Disperse red 50) and S-type disperse dye(C.I. Disperse red 92) to measure dyed fabric's dye exhaustion, dye uptake, color and color difference according to the diverse conditions including dying temperature, time and mixed ratio of the dye. Dye equilibrium of combination dyeing occurred in $100^{\circ}C$, but by comparing dyed fabrics' K/S value and surface color, it was found that $120^{\circ}C$ was where the manifestation of color of triacetate and quick drying PET was identical. Mixed dye exhaustion and dye uptake merely changed as dyeing time increased, but color became more uniform. Therefore, it can be concluded that by using combination dyeing method, and by using the mixed dye which the mixing ratio of S-type dye and E-type dye is appropriately controlled, dye uptake can be improved compared to using single dyeing regardless of the color of E-type dye.

The Dyeing Properties of Poly(trimethylene terephthalate) by Disperse Dyes with Different Energy Level (Energy Level이 다른 분산염료를 이용한 Poly(trimethylene terephthalate)섬유의 염색성)

  • 백지연;김정렬;이난형;윤태희;김삼수
    • Textile Coloration and Finishing
    • /
    • v.15 no.5
    • /
    • pp.316-320
    • /
    • 2003
  • In order to investigate the dyeing property of poly trimethylene terephthalate(PTT) fabric, the dyeing of PTT fabric was carried at under condition of different dyeing temperature by using several disperse dyes with different energy level. Particularly, this study discussed the PTT dyeing thermodynamically. Used disperse dyes were selected based on the their chemical structure and energy level. The obtained results were as followings; The dye adsorption of S type disperse dye such as C. I. Disperse Blue 79 increased with increasing dyeing temperature. In a exhaustion rate of PTT fabric with disperse dyes, C. I. Disperse Blue 56 showed higher values than that of C. I. Disperse Orange 29 and Blue 79. For the interpretation of thermodynamic dyeing behavior, the partition coefficient ( K ) and some several thermodynamic parameters such as standard affinity$(-\mu^\circ)$ and heat of dyeing$(\Delta{H}^\circ)$ calculated from the adsorption isotherm. From above results, as the energy level of disperse dye is small, the partition coefficient and standard affinity increased. But the heat of dyeing of PTT fabric with disperse dye showed high negative value in order of E type(C. I. Disperse Blue 56), SE type(C. I. Disperse Orange 29) and S type(C. I. Disperse 79).

Dyeing Properties on Jacquard Fabric for Blind Using Low-melting Flame Retardant Polyester (저융점 난연 폴리에스터를 이용한 블라인드용 자카드 직물의 염색성)

  • Kim, Jeong-Hwa;Lee, Jung Soon;Lee, Sung-Young;Lee, Seung-Gu
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.38 no.3
    • /
    • pp.404-414
    • /
    • 2014
  • This study investigates the dyeability and fastness of jacquard fabric for blind using low-melting flame retardant polyester. Two types of jacquard fabric were prepared with a low-melting flame retardant polyester and regular polyester. The low-melting flame retardant polyester has a sheath and a core. The core consists of flame retardant polyester and the sheath consists of low-melting polyester. Disperse red 50 (DR 50), disperse blue 56 (DB 56), disperse yellow (DY 54) of E-type dyes and disperse 92 (DR 92), disperse blue 60 (DB 60), disperse yellow (DY 79) of S-type dyes were used and dyed on jacquard fabrics dependent of dyeing temperature and time. The fastness, dye exhaustion, color strength (K/S value), and colorimetric properties of jacquard fabrics were evaluated. The dyeability of S-type dyes were higher than E-type dyes. The experiments indicated optimum dyeability that the dyeing temperature was $110^{\circ}C$ for E-type dyes and $120^{\circ}C$ for S-type dyes for 40 minutes. The fastness to washing and light were excellent at a 4-5 grade.

Dyeing Properties of Blanket Fabric of Dyeable Polypropylene

  • Kim, Hyun-Jin;Lee, Jin-Ah;Chang, Young-Min;Park, Jong-Ho;Kim, Sung-Dong
    • Textile Coloration and Finishing
    • /
    • v.19 no.2
    • /
    • pp.36-43
    • /
    • 2007
  • Dyeing and fastness properties of a dyeable PP fiber were examined with four different types of disperse dyes. It was found that the dyed PP fiber could be cleared by soaping without using sodium hydrosulphite, and that the heat setting above $140^{\circ}C$ resulted in the melting of the PP fiber. The rates of dyeing and the extents of exhaustion of three primary E type dyes were different with each other, the apparent color strength did not increase with increasing dye concentration, and color fastness to washing was not satisfactory. In the cases of both high wash fastness and high light fastness dyes, the rates of dyeing were slow and the extents of exhaustion were very low. On the other hand, the dyeing rates of three primary S type dyes were similar and the build-up properties were good with good color fastnesses. It might be concluded that the best disperse dyes for the dyeable PP fiber were S type dyes.

Dyeability of Low-melting Hybrid Polyester at Low Temperature (저융점 폴리에스테르 복합사의 저온 염색성)

  • Hwang, Ji-Hyun;Kim, Chang-Nam;Ma, Jin-Suk;Oh, Hae-Sun;Yoon, Nam-Sik
    • Textile Coloration and Finishing
    • /
    • v.24 no.2
    • /
    • pp.113-120
    • /
    • 2012
  • Jacquard floor covering could be prepared from low-melting/regular sheath-core hybrid polyester, where the fiber is dyed in yarn state. With regard that the expected high shrinkage of the hybrid polyester in water makes problems in yarn dyeing, low-temperature dyeing properties of the hybrid polyester were studied. The rate of shrinkage of low-melting hybrid polyester exceeds 9% in hot water above $90^{\circ}C$, at such condition, cheese yarn dyeing is very difficult. Although disperse dyes exhaust in a relatively high speed on low-melting hybrid polyester, diffusion of these dyes to the core regular polyester was extremely slow under $90^{\circ}C$. Foron Blue E-BL 150, an anthraquinone E-type disperse dye, showed appreciable diffusion after 48hrs dyeing at $90^{\circ}C$. The fastness to rubbing and drycleaning were improved by one grade after reduction cleaning.