• Title/Summary/Keyword: E-commerce Business

Search Result 1,147, Processing Time 0.026 seconds

The Impact of Market Environments on Optimal Channel Strategy Involving an Internet Channel: A Game Theoretic Approach (시장 환경이 인터넷 경로를 포함한 다중 경로 관리에 미치는 영향에 관한 연구: 게임 이론적 접근방법)

  • Yoo, Weon-Sang
    • Journal of Distribution Research
    • /
    • v.16 no.2
    • /
    • pp.119-138
    • /
    • 2011
  • Internet commerce has been growing at a rapid pace for the last decade. Many firms try to reach wider consumer markets by adding the Internet channel to the existing traditional channels. Despite the various benefits of the Internet channel, a significant number of firms failed in managing the new type of channel. Previous studies could not cleary explain these conflicting results associated with the Internet channel. One of the major reasons is most of the previous studies conducted analyses under a specific market condition and claimed that as the impact of Internet channel introduction. Therefore, their results are strongly influenced by the specific market settings. However, firms face various market conditions in the real worlddensity and disutility of using the Internet. The purpose of this study is to investigate the impact of various market environments on a firm's optimal channel strategy by employing a flexible game theory model. We capture various market conditions with consumer density and disutility of using the Internet.

    shows the channel structures analyzed in this study. Before the Internet channel is introduced, a monopoly manufacturer sells its products through an independent physical store. From this structure, the manufacturer could introduce its own Internet channel (MI). The independent physical store could also introduce its own Internet channel and coordinate it with the existing physical store (RI). An independent Internet retailer such as Amazon could enter this market (II). In this case, two types of independent retailers compete with each other. In this model, consumers are uniformly distributed on the two dimensional space. Consumer heterogeneity is captured by a consumer's geographical location (ci) and his disutility of using the Internet channel (${\delta}_{N_i}$).
    shows various market conditions captured by the two consumer heterogeneities.
    (a) illustrates a market with symmetric consumer distributions. The model captures explicitly the asymmetric distributions of consumer disutility in a market as well. In a market like that is represented in
    (c), the average consumer disutility of using an Internet store is relatively smaller than that of using a physical store. For example, this case represents the market in which 1) the product is suitable for Internet transactions (e.g., books) or 2) the level of E-Commerce readiness is high such as in Denmark or Finland. On the other hand, the average consumer disutility when using an Internet store is relatively greater than that of using a physical store in a market like (b). Countries like Ukraine and Bulgaria, or the market for "experience goods" such as shoes, could be examples of this market condition. summarizes the various scenarios of consumer distributions analyzed in this study. The range for disutility of using the Internet (${\delta}_{N_i}$) is held constant, while the range of consumer distribution (${\chi}_i$) varies from -25 to 25, from -50 to 50, from -100 to 100, from -150 to 150, and from -200 to 200.
    summarizes the analysis results. As the average travel cost in a market decreases while the average disutility of Internet use remains the same, average retail price, total quantity sold, physical store profit, monopoly manufacturer profit, and thus, total channel profit increase. On the other hand, the quantity sold through the Internet and the profit of the Internet store decrease with a decreasing average travel cost relative to the average disutility of Internet use. We find that a channel that has an advantage over the other kind of channel serves a larger portion of the market. In a market with a high average travel cost, in which the Internet store has a relative advantage over the physical store, for example, the Internet store becomes a mass-retailer serving a larger portion of the market. This result implies that the Internet becomes a more significant distribution channel in those markets characterized by greater geographical dispersion of buyers, or as consumers become more proficient in Internet usage. The results indicate that the degree of price discrimination also varies depending on the distribution of consumer disutility in a market. The manufacturer in a market in which the average travel cost is higher than the average disutility of using the Internet has a stronger incentive for price discrimination than the manufacturer in a market where the average travel cost is relatively lower. We also find that the manufacturer has a stronger incentive to maintain a high price level when the average travel cost in a market is relatively low. Additionally, the retail competition effect due to Internet channel introduction strengthens as average travel cost in a market decreases. This result indicates that a manufacturer's channel power relative to that of the independent physical retailer becomes stronger with a decreasing average travel cost. This implication is counter-intuitive, because it is widely believed that the negative impact of Internet channel introduction on a competing physical retailer is more significant in a market like Russia, where consumers are more geographically dispersed, than in a market like Hong Kong, that has a condensed geographic distribution of consumers.
    illustrates how this happens. When mangers consider the overall impact of the Internet channel, however, they should consider not only channel power, but also sales volume. When both are considered, the introduction of the Internet channel is revealed as more harmful to a physical retailer in Russia than one in Hong Kong, because the sales volume decrease for a physical store due to Internet channel competition is much greater in Russia than in Hong Kong. The results show that manufacturer is always better off with any type of Internet store introduction. The independent physical store benefits from opening its own Internet store when the average travel cost is higher relative to the disutility of using the Internet. Under an opposite market condition, however, the independent physical retailer could be worse off when it opens its own Internet outlet and coordinates both outlets (RI). This is because the low average travel cost significantly reduces the channel power of the independent physical retailer, further aggravating the already weak channel power caused by myopic inter-channel price coordination. The results implies that channel members and policy makers should explicitly consider the factors determining the relative distributions of both kinds of consumer disutility, when they make a channel decision involving an Internet channel. These factors include the suitability of a product for Internet shopping, the level of E-Commerce readiness of a market, and the degree of geographic dispersion of consumers in a market. Despite the academic contributions and managerial implications, this study is limited in the following ways. First, a series of numerical analyses were conducted to derive equilibrium solutions due to the complex forms of demand functions. In the process, we set up V=100, ${\lambda}$=1, and ${\beta}$=0.01. Future research may change this parameter value set to check the generalizability of this study. Second, the five different scenarios for market conditions were analyzed. Future research could try different sets of parameter ranges. Finally, the model setting allows only one monopoly manufacturer in the market. Accommodating competing multiple manufacturers (brands) would generate more realistic results.

  • PDF
  • A Study on EC Acceptance of Virtual Community Users (가상 공동체 사용자의 전자상거래 수용에 대한 연구)

    • Lee, Hyoung-Yong;Ahn, Hyun-Chul
      • Asia pacific journal of information systems
      • /
      • v.19 no.1
      • /
      • pp.147-165
      • /
      • 2009
    • Virtual community(VC) will increasingly be organized as commercial enterprises, with the objective of earning an attractive financial return by providing members with valuable resources and environment. For example, Cyworld.com in Korea uses several community services to enable customers of Cyworld to take control of their own value as potential purchasers of products and services. Although initial adoption is important for online network service success, it does not necessarily result in the desired managerial performance unless the initial usage is continuously related to the continuous usage and purchase. Particularly, the customer who receives relevant online services and is well equipped with online network services, will trust the online service provider and perceive less risk and experience more activities such as continuous usage and purchase. Thus, how to promote continued online service usage or, alternatively, how to prevent discontinuance is a critical issue for VC service providers to consider. By aggregating a wide range of information and online environments for customers and providing trust to its members, the service providers of virtual communities help to reduce the perceived risk of continuous usage and purchase. Drill down, online service managers realize that achieving strong and sustained customers who continuously use online service and purchase on it is crucial. Therefore, the research into this online service continuance will identify the relationship between the initial usage and the continuous usage and purchase. The research of continuous usage or post adoption has recently emerged as an important issue in the IS literature. Individuals' information systems(IS) continuous usage decisions are congruent with consumers' repeat purchase decisions. The TAM(Technology Acceptance Model) paradigm has been strongly confirmed across a wide range from product purchase on EC to online service usage contexts. The analysis of IS usage based on TAM has proven to be successful across almost online service contexts. However, most of previous studies have focused on only an area (i.e., VC or EC). Just little research has tried to analyze the relationship between VC and EC. The effect of some factors on user intention, captured through several theories such as TAM, has been demonstrated. Yet, few studies have explored the salient relationships of VC users' EC acceptance. To fill this gap between VC and EC research, this paper attempts to develop a research model that extends the TAM perspective in view of the additional contributions of trust in the service provider and trust in members on some factors that affect EC and VC adoption. In this extension, we applied the TAM-to-TAM(T2T) model, and analyzed the transfer effect of trust between these two TAMs. The research model was empirically tested on the context of a social network service. The model was to extend TAM with the trust concept for the virtual community environment from the perspective of tasks. By building an extended model of TAM and examining the relationships between trust and the existing variables of TAM, it is aimed to explain a user's continuous intention to use VC and purchase on EC. The unit of analysis in this paper is an individual user of a virtual community. The population of interest is the individual with the experiences in virtual community. The data for this paper was made available via a Web survey of VC users. In total, 281 cases were gathered for about one week, but there were some missing values in the sample and there were some inappropriate cases. Thus, only 248 cases were finally analyzed. We chose the structural equation analysis to test the hypotheses and it is better suited for explaining complex relationships than the other methods. In this test, AMOS was used to test the Structural Equation Model (SEM). Noticeable results have been found in the T2T model regarding the factors affecting the intention to use of virtual community and loyalty. Our result showed that trust transfer plays a key role in forming the two adoption beliefs. Overall, this study preliminarily confirms the salience of trust transfer in online service.

    Product Recommender Systems using Multi-Model Ensemble Techniques (다중모형조합기법을 이용한 상품추천시스템)

    • Lee, Yeonjeong;Kim, Kyoung-Jae
      • Journal of Intelligence and Information Systems
      • /
      • v.19 no.2
      • /
      • pp.39-54
      • /
      • 2013
    • Recent explosive increase of electronic commerce provides many advantageous purchase opportunities to customers. In this situation, customers who do not have enough knowledge about their purchases, may accept product recommendations. Product recommender systems automatically reflect user's preference and provide recommendation list to the users. Thus, product recommender system in online shopping store has been known as one of the most popular tools for one-to-one marketing. However, recommender systems which do not properly reflect user's preference cause user's disappointment and waste of time. In this study, we propose a novel recommender system which uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user's preference. The research data is collected from the real-world online shopping store, which deals products from famous art galleries and museums in Korea. The data initially contain 5759 transaction data, but finally remain 3167 transaction data after deletion of null data. In this study, we transform the categorical variables into dummy variables and exclude outlier data. The proposed model consists of two steps. The first step predicts customers who have high likelihood to purchase products in the online shopping store. In this step, we first use logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. We perform above data mining techniques using SAS E-Miner software. In this study, we partition datasets into two sets as modeling and validation sets for the logistic regression and decision trees. We also partition datasets into three sets as training, test, and validation sets for the artificial neural network model. The validation dataset is equal for the all experiments. Then we composite the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. Bagging is the abbreviation of "Bootstrap Aggregation" and it composite outputs from several machine learning techniques for raising the performance and stability of prediction or classification. This technique is special form of the averaging method. Bumping is the abbreviation of "Bootstrap Umbrella of Model Parameter," and it only considers the model which has the lowest error value. The results show that bumping outperforms bagging and the other predictors except for "Poster" product group. For the "Poster" product group, artificial neural network model performs better than the other models. In the second step, we use the market basket analysis to extract association rules for co-purchased products. We can extract thirty one association rules according to values of Lift, Support, and Confidence measure. We set the minimum transaction frequency to support associations as 5%, maximum number of items in an association as 4, and minimum confidence for rule generation as 10%. This study also excludes the extracted association rules below 1 of lift value. We finally get fifteen association rules by excluding duplicate rules. Among the fifteen association rules, eleven rules contain association between products in "Office Supplies" product group, one rules include the association between "Office Supplies" and "Fashion" product groups, and other three rules contain association between "Office Supplies" and "Home Decoration" product groups. Finally, the proposed product recommender systems provides list of recommendations to the proper customers. We test the usability of the proposed system by using prototype and real-world transaction and profile data. For this end, we construct the prototype system by using the ASP, Java Script and Microsoft Access. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The participants for the survey are 173 persons who use MSN Messenger, Daum Caf$\acute{e}$, and P2P services. We evaluate the user satisfaction using five-scale Likert measure. This study also performs "Paired Sample T-test" for the results of the survey. The results show that the proposed model outperforms the random selection model with 1% statistical significance level. It means that the users satisfied the recommended product list significantly. The results also show that the proposed system may be useful in real-world online shopping store.

    Recommender Systems using Structural Hole and Collaborative Filtering (구조적 공백과 협업필터링을 이용한 추천시스템)

    • Kim, Mingun;Kim, Kyoung-Jae
      • Journal of Intelligence and Information Systems
      • /
      • v.20 no.4
      • /
      • pp.107-120
      • /
      • 2014
    • This study proposes a novel recommender system using the structural hole analysis to reflect qualitative and emotional information in recommendation process. Although collaborative filtering (CF) is known as the most popular recommendation algorithm, it has some limitations including scalability and sparsity problems. The scalability problem arises when the volume of users and items become quite large. It means that CF cannot scale up due to large computation time for finding neighbors from the user-item matrix as the number of users and items increases in real-world e-commerce sites. Sparsity is a common problem of most recommender systems due to the fact that users generally evaluate only a small portion of the whole items. In addition, the cold-start problem is the special case of the sparsity problem when users or items newly added to the system with no ratings at all. When the user's preference evaluation data is sparse, two users or items are unlikely to have common ratings, and finally, CF will predict ratings using a very limited number of similar users. Moreover, it may produces biased recommendations because similarity weights may be estimated using only a small portion of rating data. In this study, we suggest a novel limitation of the conventional CF. The limitation is that CF does not consider qualitative and emotional information about users in the recommendation process because it only utilizes user's preference scores of the user-item matrix. To address this novel limitation, this study proposes cluster-indexing CF model with the structural hole analysis for recommendations. In general, the structural hole means a location which connects two separate actors without any redundant connections in the network. The actor who occupies the structural hole can easily access to non-redundant, various and fresh information. Therefore, the actor who occupies the structural hole may be a important person in the focal network and he or she may be the representative person in the focal subgroup in the network. Thus, his or her characteristics may represent the general characteristics of the users in the focal subgroup. In this sense, we can distinguish friends and strangers of the focal user utilizing the structural hole analysis. This study uses the structural hole analysis to select structural holes in subgroups as an initial seeds for a cluster analysis. First, we gather data about users' preference ratings for items and their social network information. For gathering research data, we develop a data collection system. Then, we perform structural hole analysis and find structural holes of social network. Next, we use these structural holes as cluster centroids for the clustering algorithm. Finally, this study makes recommendations using CF within user's cluster, and compare the recommendation performances of comparative models. For implementing experiments of the proposed model, we composite the experimental results from two experiments. The first experiment is the structural hole analysis. For the first one, this study employs a software package for the analysis of social network data - UCINET version 6. The second one is for performing modified clustering, and CF using the result of the cluster analysis. We develop an experimental system using VBA (Visual Basic for Application) of Microsoft Excel 2007 for the second one. This study designs to analyzing clustering based on a novel similarity measure - Pearson correlation between user preference rating vectors for the modified clustering experiment. In addition, this study uses 'all-but-one' approach for the CF experiment. In order to validate the effectiveness of our proposed model, we apply three comparative types of CF models to the same dataset. The experimental results show that the proposed model outperforms the other comparative models. In especial, the proposed model significantly performs better than two comparative modes with the cluster analysis from the statistical significance test. However, the difference between the proposed model and the naive model does not have statistical significance.

    An Empirical Study on Perceived Value and Continuous Intention to Use of Smart Phone, and the Moderating Effect of Personal Innovativeness (스마트폰의 지각된 가치와 지속적 사용의도, 그리고 개인 혁신성의 조절효과)

    • Han, Joonhyoung;Kang, Sungbae;Moon, Taesoo
      • Asia pacific journal of information systems
      • /
      • v.23 no.4
      • /
      • pp.53-84
      • /
      • 2013
    • With rapid development of ICT (Information and Communications Technology), new services by the convergence of mobile network and application technology began to appear. Today, smart phone with new ICT convergence network capabilities is exceedingly popular and very useful as a new tool for the development of business opportunities. Previous studies based on Technology Acceptance Model (TAM) suggested critical factors, which should be considered for acquiring new customers and maintaining existing users in smart phone market. However, they had a limitation to focus on technology acceptance, not value based approach. Prior studies on customer's adoption of electronic utilities like smart phone product showed that the antecedents such as the perceived benefit and the perceived sacrifice could explain the causality between what is perceived and what is acquired over diverse contexts. So, this research conceptualizes perceived value as a trade-off between perceived benefit and perceived sacrifice, and we need to research the perceived value to grasp user's continuous intention to use of smart phone. The purpose of this study is to investigate the structured relationship between benefit (quality, usefulness, playfulness) and sacrifice (technicality, cost, security risk) of smart phone users, perceived value, and continuous intention to use. In addition, this study intends to analyze the differences between two subgroups of smart phone users by the degree of personal innovativeness. Personal innovativeness could help us to understand the moderating effect between how perceptions are formed and continuous intention to use smart phone. This study conducted survey through e-mail, direct mail, and interview with smart phone users. Empirical analysis based on 330 respondents was conducted in order to test the hypotheses. First, the result of hypotheses testing showed that perceived usefulness among three factors of perceived benefit has the highest positive impact on perceived value, and then followed by perceived playfulness and perceived quality. Second, the result of hypotheses testing showed that perceived cost among three factors of perceived sacrifice has significantly negative impact on perceived value, however, technicality and security risk have no significant impact on perceived value. Also, the result of hypotheses testing showed that perceived value has significant direct impact on continuous intention to use of smart phone. In this regard, marketing managers of smart phone company should pay more attention to improve task efficiency and performance of smart phone, including rate systems of smart phone. Additionally, to test the moderating effect of personal innovativeness, this research conducted multi-group analysis by the degree of personal innovativeness of smart phone users. In a group with high level of innovativeness, perceived usefulness has the highest positive influence on perceived value than other factors. Instead, the analysis for a group with low level of innovativeness showed that perceived playfulness was the highest positive factor to influence perceived value than others. This result of the group with high level of innovativeness explains that innovators and early adopters are able to cope with higher level of cost and risk, and they expect to develop more positive intentions toward higher performance through the use of an innovation. Also, hedonic behavior in the case of the group with low level of innovativeness aims to provide self-fulfilling value to the users, in contrast to utilitarian perspective, which aims to provide instrumental value to the users. However, with regard to perceived sacrifice, both groups in general showed negative impact on perceived value. Also, the group with high level of innovativeness had less overall negative impact on perceived value compared to the group with low level of innovativeness across all factors. In both group with high level of innovativeness and with low level of innovativeness, perceived cost has the highest negative influence on perceived value than other factors. Instead, the analysis for a group with high level of innovativeness showed that perceived technicality was the positive factor to influence perceived value than others. However, the analysis for a group with low level of innovativeness showed that perceived security risk was the second high negative factor to influence perceived value than others. Unlike previous studies, this study focuses on influencing factors on continuous intention to use of smart phone, rather than considering initial purchase and adoption of smart phone. First, perceived value, which was used to identify user's adoption behavior, has a mediating effect among perceived benefit, perceived sacrifice, and continuous intention to use smart phone. Second, perceived usefulness has the highest positive influence on perceived value, while perceived cost has significant negative influence on perceived value. Third, perceived value, like prior studies, has high level of positive influence on continuous intention to use smart phone. Fourth, in multi-group analysis by the degree of personal innovativeness of smart phone users, perceived usefulness, in a group with high level of innovativeness, has the highest positive influence on perceived value than other factors. Instead, perceived playfulness, in a group with low level of innovativeness, has the highest positive factor to influence perceived value than others. This result shows that early adopters intend to adopt smart phone as a tool to make their job useful, instead market followers intend to adopt smart phone as a tool to make their time enjoyable. In terms of marketing strategy for smart phone company, marketing managers should pay more attention to identify their customers' lifetime value by the phase of smart phone adoption, as well as to understand their behavior intention to accept the risk and uncertainty positively. The academic contribution of this study primarily is to employ the VAM (Value-based Adoption Model) as a conceptual foundation, compared to TAM (Technology Acceptance Model) used widely by previous studies. VAM is useful for understanding continuous intention to use smart phone in comparison with TAM as a new IT utility by individual adoption. Perceived value dominantly influences continuous intention to use smart phone. The results of this study justify our research model adoption on each antecedent of perceived value as a benefit and a sacrifice component. While TAM could be widely used in user acceptance of new technology, it has a limitation to explain the new IT adoption like smart phone, because of customer behavior intention to choose the value of the object. In terms of theoretical approach, this study provides theoretical contribution to the development, design, and marketing of smart phone. The practical contribution of this study is to suggest useful decision alternatives concerned to marketing strategy formulation for acquiring and retaining long-term customers related to smart phone business. Since potential customers are interested in both benefit and sacrifice when evaluating the value of smart phone, marketing managers in smart phone company has to put more effort into creating customer's value of low sacrifice and high benefit so that customers will continuously have higher adoption on smart phone. Especially, this study shows that innovators and early adopters with high level of innovativeness have higher adoption than market followers with low level of innovativeness, in terms of perceived usefulness and perceived cost. To formulate marketing strategy for smart phone diffusion, marketing managers have to pay more attention to identify not only their customers' benefit and sacrifice components but also their customers' lifetime value to adopt smart phone.

    Word-of-Mouth Effect for Online Sales of K-Beauty Products: Centered on China SINA Weibo and Meipai (K-Beauty 구전효과가 온라인 매출액에 미치는 영향: 중국 SINA Weibo와 Meipai 중심으로)

    • Liu, Meina;Lim, Gyoo Gun
      • Journal of Intelligence and Information Systems
      • /
      • v.25 no.1
      • /
      • pp.197-218
      • /
      • 2019
    • In addition to economic growth and national income increase, China is also experiencing rapid growth in consumption of cosmetics. About 67% of the total trade volume of Chinese cosmetics is made by e-commerce and especially K-Beauty products, which are Korean cosmetics are very popular. According to previous studies, 80% of consumer goods such as cosmetics are affected by the word of mouth information, searching the product information before purchase. Mostly, consumers acquire information related to cosmetics through comments made by other consumers on SNS such as SINA Weibo and Wechat, and recently they also use information about beauty related video channels. Most of the previous online word-of-mouth researches were mainly focused on media itself such as Facebook, Twitter, and blogs. However, the informational characteristics and the expression forms are also diverse. Typical types are text, picture, and video. This study focused on these types. We analyze the unstructured data of SINA Weibo, the SNS representative platform of China, and Meipai, the video platform, and analyze the impact of K-Beauty brand sales by dividing online word-of-mouth information with quantity and direction information. We analyzed about 330,000 data from Meipai, and 110,000 data from SINA Weibo and analyzed the basic properties of cosmetics. As a result of analysis, the amount of online word-of-mouth information has a positive effect on the sales of cosmetics irrespective of the type of media. However, the online videos showed higher impacts than the pictures and texts. Therefore, it is more effective for companies to carry out advertising and promotional activities in parallel with the existing SNS as well as video related information. It is understood that it is important to generate the frequency of exposure irrespective of media type. The positiveness of the video media was significant but the positiveness of the picture and text media was not significant. Due to the nature of information types, the amount of information in video media is more than that in text-oriented media, and video-related channels are emerging all over the world. In particular, China has made a number of video platforms in recent years and has enjoyed popularity among teenagers and thirties. As a result, existing SNS users are being dispersed to video media. We also analyzed the effect of online type of information on the online cosmetics sales by dividing the product type of cosmetics into basic cosmetics and color cosmetics. As a result, basic cosmetics had a positive effect on the sales according to the number of online videos and it was affected by the negative information of the videos. In the case of basic cosmetics, effects or characteristics do not appear immediately like color cosmetics, so information such as changes after use is often transmitted over a period of time. Therefore, it is important for companies to move more quickly to issues generated from video media. Color cosmetics are largely influenced by negative oral statements and sensitive to picture and text-oriented media. Information such as picture and text has the advantage and disadvantage that the process of making it can be made easier than video. Therefore, complaints and opinions are generally expressed in SNS quickly and immediately. Finally, we analyzed how product diversity affects sales according to online word of mouth information type. As a result of the analysis, it can be confirmed that when a variety of products are introduced in a video channel, they have a positive effect on online cosmetics sales. The significance of this study in the theoretical aspect is that, as in the previous studies, online sales have basically proved that K-Beauty cosmetics are also influenced by word-of-mouth. However this study focused on media types and both media have a positive impact on sales, as in previous studies, but it has been proven that video is more informative and influencing than text, depending on media abundance. In addition, according to the existing research on information direction, it is said that the negative influence has more influence, but in the basic study, the correlation is not significant, but the effect of negation in the case of color cosmetics is large. In the case of temporal fashion products such as color cosmetics, fast oral effect is influenced. In practical terms, it is expected that it will be helpful to use advertising strategies on the sales and advertising strategy of K-Beauty cosmetics in China by distinguishing basic and color cosmetics. In addition, it can be said that it recognized the importance of a video advertising strategy such as YouTube and one-person media. The results of this study can be used as basic data for analyzing the big data in understanding the Chinese cosmetics market and establishing appropriate strategies and marketing utilization of related companies.

    Impact of Semantic Characteristics on Perceived Helpfulness of Online Reviews (온라인 상품평의 내용적 특성이 소비자의 인지된 유용성에 미치는 영향)

    • Park, Yoon-Joo;Kim, Kyoung-jae
      • Journal of Intelligence and Information Systems
      • /
      • v.23 no.3
      • /
      • pp.29-44
      • /
      • 2017
    • In Internet commerce, consumers are heavily influenced by product reviews written by other users who have already purchased the product. However, as the product reviews accumulate, it takes a lot of time and effort for consumers to individually check the massive number of product reviews. Moreover, product reviews that are written carelessly actually inconvenience consumers. Thus many online vendors provide mechanisms to identify reviews that customers perceive as most helpful (Cao et al. 2011; Mudambi and Schuff 2010). For example, some online retailers, such as Amazon.com and TripAdvisor, allow users to rate the helpfulness of each review, and use this feedback information to rank and re-order them. However, many reviews have only a few feedbacks or no feedback at all, thus making it hard to identify their helpfulness. Also, it takes time to accumulate feedbacks, thus the newly authored reviews do not have enough ones. For example, only 20% of the reviews in Amazon Review Dataset (Mcauley and Leskovec, 2013) have more than 5 reviews (Yan et al, 2014). The purpose of this study is to analyze the factors affecting the usefulness of online product reviews and to derive a forecasting model that selectively provides product reviews that can be helpful to consumers. In order to do this, we extracted the various linguistic, psychological, and perceptual elements included in product reviews by using text-mining techniques and identifying the determinants among these elements that affect the usability of product reviews. In particular, considering that the characteristics of the product reviews and determinants of usability for apparel products (which are experiential products) and electronic products (which are search goods) can differ, the characteristics of the product reviews were compared within each product group and the determinants were established for each. This study used 7,498 apparel product reviews and 106,962 electronic product reviews from Amazon.com. In order to understand a review text, we first extract linguistic and psychological characteristics from review texts such as a word count, the level of emotional tone and analytical thinking embedded in review text using widely adopted text analysis software LIWC (Linguistic Inquiry and Word Count). After then, we explore the descriptive statistics of review text for each category and statistically compare their differences using t-test. Lastly, we regression analysis using the data mining software RapidMiner to find out determinant factors. As a result of comparing and analyzing product review characteristics of electronic products and apparel products, it was found that reviewers used more words as well as longer sentences when writing product reviews for electronic products. As for the content characteristics of the product reviews, it was found that these reviews included many analytic words, carried more clout, and related to the cognitive processes (CogProc) more so than the apparel product reviews, in addition to including many words expressing negative emotions (NegEmo). On the other hand, the apparel product reviews included more personal, authentic, positive emotions (PosEmo) and perceptual processes (Percept) compared to the electronic product reviews. Next, we analyzed the determinants toward the usefulness of the product reviews between the two product groups. As a result, it was found that product reviews with high product ratings from reviewers in both product groups that were perceived as being useful contained a larger number of total words, many expressions involving perceptual processes, and fewer negative emotions. In addition, apparel product reviews with a large number of comparative expressions, a low expertise index, and concise content with fewer words in each sentence were perceived to be useful. In the case of electronic product reviews, those that were analytical with a high expertise index, along with containing many authentic expressions, cognitive processes, and positive emotions (PosEmo) were perceived to be useful. These findings are expected to help consumers effectively identify useful product reviews in the future.


    (34141) Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon
    Copyright (C) KISTI. All Rights Reserved.