컴퓨터 프로그래밍 실습을 위한 가상 데스크탑 서비스를 제공하기 위해서는 각 교과별로 사용자 그룹이 만들어져야 하며, 개발도구, 디스크 이미지, 사용자 계정 정보, 로그 데이터 등을 관리하기 위한 관리 프로그램이 필요하다. 본 논문에서는 대학에서 컴퓨터 프로그래밍 실습 교육에 활용할 수 있는 클라우드 컴퓨팅 기반의 가상 데스크탑 서비스 제공 방안과 효율적인 운영 관리 방안을 연구하였다. 구현된 가상 실습 환경 운영 관리 시스템을 이용하면 각 교과의 커리큘럼에 적합하게 커스토마이징 된 실습 환경을 사전에 미리 구축하여 교과별로 빠르게 프로비저닝 할 수 있다.
스마트폰의 보유율과 스마트폰을 이용한 인터넷 이용률이 증가하며 정보환경이 기존의 PC 환경에서 스마트 모바일 환경으로 전환하고 있다. 현재의 대학생들은 PC보다 스마트폰을, 문자보다 동영상 콘텐츠를 선호하는 특징을 갖는 Z세대이다. 따라서 본 연구는 스마트 모바일 환경에서 대학생들의 대학도서관 전자자료 이용행태가 어떠한 양상을 띠는지를 파악하고자 하였다. A대학도서관의 3년간의 전자책, 오디오북, 동영상 강의자료 이용데이터 61,433건과 이용자 데이터 1,595건을 수집하여 이용통계 분석을 실시하였다. 자료별 이용일자, 주제, 출판년도, 이용채널 데이터를 수집하고 이용자별 성별, 소속계열, 신분, 입학일, 졸업일 데이터를 수집하여 전자자료 이용의 일반적인 특징뿐만 아니라 성별/계열별/신분별 이용자 특성에 따른 전자자료 이용행태의 특성을 파악하였다. 이러한 연구결과를 바탕으로 변화하는 상황을 반영하고 향후 적용가능한 실질적인 전자자료 서비스 방안을 제시하였다.
In this paper, the pattern of extracting the same expression is proposed by using the Android intelligent device to identify the facial expression. The understanding and expression of expression are very important to human computer interaction, and the technology to identify human expressions is very popular. Instead of searching for the emoticons that users often use, you can identify facial expressions with acamera, which is a useful technique that can be used now. This thesis puts forward the technology of the third data is available on the website of the set, use the content to improve the infrastructure of the facial expression recognition accuracy, in order to improve the synthesis of neural network algorithm, making the facial expression recognition model, the user's facial expressions and similar e xpressions, reached 66%.It doesn't need to search for emoticons. If you use the camera to recognize the expression, itwill appear emoticons immediately. So this service is the emoticons used when people send messages to others, and it can feel a lot of convenience. In countless emoticons, there is no need to find emoticons, which is an increasing trend in deep learning. So we need to use more suitable algorithm for expression recognition, and then improve accuracy.
초등학생들은 통합된 멀티미디어를 제공하는 인터넷 게임에 대단한 관심을 갖고 있으며, 자연스럽게 네트워크 관련 용어(게임서버, 인터넷 서비스, 인터넷 속도 등) 및 인터넷상에서 일어나는 기술 현상에 대해서도 익숙해져 있다. 그러나 초등 컴퓨터 교과 내용은 ICT 소양교육과 활용교육, 즉 도구 사용 기술로만 되어 있어 이러한 현상들에 대한 개념과 원리를 이해하기는 어렵다. 따라서, 본 논문에서는 도구 학습이 아닌 인터넷의 기반인 네트워크 개념에 대한 교수학습을 문제중심 모형을 이용하여 설계하고 수업현장에 적용한다. 그 결과로 보다 더 원리와 개념 이해영역으로 초등 컴퓨터 교과 내용의 변화가 필요함을 보이고자 한다.
이 연구는 사이버농업기술교육 참여자의 학습특성과 효과를 분석하여, 적절한 지원방안을 제언하고자 수행되었다. 이를 위하여 문헌연구와 인터넷 조사를 통하여 수행되었다. 이 연구를 통하여 밝혀진 결과는 다음과 같다. 사이버농업기술교육을 수강하는 학생들은 50대와 40대의 대졸수준의 도시출신으로 농업분야 전공자가 아닌 사람들이 다수로서, 월 200-300만원미만의 소득을 올리고 있고, 주로 남성이 농사지식, 개인적능력개발, 담당업무처리능력 개발 목적으로 주로 참여하고 있고, 사이버교육이나 농업에 대한 선행학습경험이 약간 부족한 수준이었고, 학습양식은 구체적-순차적형, 두 가지 이상 복합형이 많았다. 사이버 농업기술교육에서 전반적으로 만족도나 학업성취는 우수하고, 내용구성이나 현업적응도는 비교적 적절한 수준이며, 운영지원과 영향력, 학습과정은 보통수준이었다. 한과목이하 이수집단보다 두과목이상 이수집단이 영향력 평가가 긍정적이었고, 수료증과정과 공개과정 모두를 이수한 집단이 공개과정만 이수한 집단보다 만족도가 더 높았다. 이상의 연구결과를 통하여 농촌진흥청 사이버 농업기술과정에 대한 지원방안을 특성화 프로그램으로의 확대, 지원인력의 확대, 온라인과 오프라인 모임공간 제공, 교육생지역의 농업기술센터와의 연계를 통한 blended learning system 도입, 학습자들의 이해를 돕기 위한 용어와 사전 제시, 흥미유발과 지원을 도울 사이버 튜터 및 인터넷 전화 활용을 제안하였다.
향상된 모바일 광대역(eMBB), 초저지연 및 고신뢰 통신(URLLC), 대규모 기계형 통신(mMTC) 등의 특징을 가진 5G의 등장으로 인해 효율적인 네트워크 관리와 서비스 제공을 위해 증가하는 네트워크 트래픽과 복잡성 해결이 시급한 상황이다.본 논문에서는 기계학습(Machine Learning, ML) 및 딥러닝(Deep Learning, DL)기술을 활용하여 5G 네트워크의 초고속, 초저지연, 초연결성이라는 주요 과제를 해결하면서 네트워크 슬라이싱 및 자원 할당을 동적으로 최적화하는 새로운 접근 방식을 제시한다. 제안된 기법에서는 네트워크 트래픽 및 자원 할당에 대한 예측 모델, 네트워크 대역폭 및 지연 시간을 최적화하면서 동시에 개인 정보와 보안을 향상시키기 위한 연합 학습(FL) 기법을 사용한다. 특히, 본 논문에서는 랜덤 포레스트와 LSTM 등 다양한 알고리듬과 모델의 구현 방법에 대해 자세히 다루며, 이를 통해 5G 네트워크 운영의 자동화와 지능화를 위한 방법론을 제시한다. 마지막으로 제안된 기법을 통해 5G 네트워크에 ML 및 DL을 적용하여 얻을 수 있는 성능향상 효과를 성능평가 및 분석을 통해 검증하고 다양한 산업 응용 분야에서 네트워크 슬라이싱 및 자원 관리 최적화를 위한 솔루션을 제시한다.
e-러닝의 활성화와 인터넷 비디오 서비스 증가로 인하여 대규모 사용자에 대한 비디오 전송 서비스에 대한 요구가 매년 증가하고 있다. 이러한 요구를 충족시키기 위해 기존 방식은 비디오 서버를 루트 노드로 갖는 트리 구조를 이용하는데 이 방식은 경로상의 한 노드에서만 문제가 발생해도 그 노드 하위 노드들 전체의 서비스가 단절되는 위험성을 안고 있다. 본 연구에서는 다중 경로를 활용한 주문형 비디오 전송 서비스를 제안한다. 기존의 구조에서 사용하는 경로에 백업과 속도 향상을 위한 새로운 경로를 추가함으로서 상위 노드의 문제가 하위 노드의 서비스에 미치는 영향을 방지하여 고품질의 비디오 서비스를 제공할 수 있음을 실험을 통해 보인다.
급격한 IT 환경의 변화에 따라 스마트 시대의 다양한 디지털 데이터가 폭발적으로 증가하고 있다. 이에 따라 다양한 영역에서 빅데이터를 활용한 서비스와 관련 기술들이 연구 및 개발되고 있다. 스마트교육에 있어서 빅데이터의 활용도는 학생, 교사, 학부모 등의 입장에서 많은 잠재력을 지니고 있다. 본 논문에서는 빅데이터에 대해 알아보고, 교육적 활용 시나리오에 대해서 살펴본다. 또한 빅데이터를 통한 맞춤형 교육 서비스를 도출하고, 이를 활용할 수 있는 방안을 제안하고자 한다. 이를 위해 교육용 빅데이터 처리 기술을 분석하고, 빅데이터 처리를 위한 시스템을 설계하고, 교육용 빅데이터를 활용하기 위해서 필요한 교육 서비스 방안을 제시하였다. 이러한 방안이 제대로 적용될 수 있는지 시범적으로 업무과 교육을 위한 클라우드 기반에서 동작하는 테스트 플랫폼을 구현하였다. 이를 교사들이 직접 사용해 보고 나서, 업무와 교육에서의 흥미도, 즐거움, 도구 사용 느낌, 긴장감이나 걱정, 자신감 등을 토대로 설문을 실시하고, 그 결과를 분석하여 교육용 빅데이터를 사용하기 위한 기반을 마련하고자 한다.
Introduction: Although continuing education is necessary for practicing nurses, it is very difficult to organize traditional classes because of large numbers of nurses and working shifts. Considering the increasing development of mobile electronic learning, we carried out a study to compare effects of the traditional face to face method with mobile learning delivered as text messages by cell phone. Materials and Methods: Sixty female nurses working in our hospital were randomly divided into class and short message service (SMS) groups. Lessons concerning breast cancer screening were prepared as 54 messages and sent in 17 days for the SMS group, while the class group participated in a class held by a university lecturer of breast and cancer surgery. Pre- and post-tests were undertaken for both groups at the same time; a retention test also was performed one month later. For statistical analysis, the paired T test and the independent sample T test were used with SPSS software version 16; p<0.05 was considered significant. Results: Mean age and mean work experience of participants in class and SMS groups was $35.8{\pm}7.2$, $9.8{\pm}6.7$, $35.4{\pm}7.3$, and $11.5{\pm}8.5$, respectively. There was a significant increase in mean score post-tests (compared with pretests) in both groups (p<0.05). Although a better improvement in scores of retention tests was demonstrated in the SMS group, the mean subtraction value of the post- and pretests as well as retention- and pretests showed no significant difference between the 2 groups (p=0.3 and p =0.2, respectively). Conclusions: Our study shows that teaching via SMS may probably replace traditional face to face teaching for continuing education in working nurses. Larger studies are suggested to confirm this.
Recently, a lot of research that applies data acquired from devices such as cameras and RFIDs to context aware services is being performed in the field on Life-Log and the sensor network. A variety of analytical techniques has been proposed to recognize various information from the raw data because video and audio data include a larger volume of information than other sensor data. However, manually watching a huge amount of media data again has been necessary to create supervised data for the update of a class or the addition of a new class because these techniques generally use supervised learning. Therefore, the problem was that applications were able to use only recognition function based on fixed supervised data in most cases. Then, we proposed a method of acquiring supervised data from a video sharing site where users give comments on any video scene because those sites are remarkably popular and, therefore, many comments are generated. In the first step of this method, words with a high utility value are extracted by filtering the comment about the video. Second, the set of feature data in the time series is calculated by applying functions, which extract various feature data, to media data. Finally, our learning system calculates the correlation coefficient by using the above-mentioned two kinds of data, and the correlation coefficient is stored in the DB of the system. Various other applications contain a recognition function that is used to generate collective intelligence based on Web comments, by applying this correlation coefficient to new media data. In addition, flexible recognition that adjusts to a new object becomes possible by regularly acquiring and learning both media data and comments from a video sharing site while reducing work by manual operation. As a result, recognition of not only the name of the seen object but also indirect information, e.g. the impression or the action toward the object, was enabled.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.