• Title/Summary/Keyword: E-EGR valve

Search Result 12, Processing Time 0.026 seconds

An Experimental Study on the Development & Application of E-EGR Valve for Light Duty Diesel Vehicle (소형디젤엔진용 E-EGR 밸브의 개발 및 차량적용에 관한 실험적 연구)

  • 송창훈;정용일;차경옥
    • Journal of Energy Engineering
    • /
    • v.11 no.3
    • /
    • pp.203-209
    • /
    • 2002
  • In this study the characteristics of E-EGR valve developed by Unick were analyzed and the feasibility of application to vehicles were evaluated. Smart car (3$\ell$/100 km) and engine which is small-displacement size, 0.8-liter, of diesel passenger car developed from Mercedes-Benz were used for this experiment. It was installed a 3-cylinder turbo-charged light duty diesel engine with an electronic EGR valve. After the analysis and comparison of E-EGR valve performance under test benches, the estimation of vehicle application was executed through the EGR map and CVS-75 test result measured on the chassis dynamometer.

Design Change of E-EGR Valve to Suppress Carbon Deposit (E-EGR Valve 내부 Carbon Deposit 억제를 위한 형상연구)

  • Lee, Hyun-Chang;Lee, Tae-Gon;Park, Woo-Cheul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.4685-4690
    • /
    • 2010
  • New E-EGR valve design to suppress a carbon deposit causing a trouble in the valve by improving gas flow velocity is proposed. With CFD simulations of various shapes of valve disk and rod, the velocities and quantities of flowing fluid are observed. The proposed unique design of having round grooves on the disk head shows the improved performance of flow velocity about 10 % without sacrificing the flow quantity.

A Study on the Characteristics and Application of E-EGR Valve for Light Duty Automotive Diesel Engine (차량용 소형디젤엔진의 배기 재순환용 전자식 밸브 특성과 적용에 관한 연구)

  • 송창훈;정용일;차경옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.425-431
    • /
    • 2002
  • In this study the characteristics of E-EGR valve developed by electrical method were analysed and the feasibility of application to vehicles was evaluated. The engine of smart car applied for diesel passenger car of small-displacement size developed by common vehicle was used for this experiment. It was installed a 3-cylinder, $0.8\ell$, turbo-charged light duty diesel engine with an electronic EGR valve. After the analysis and comparison of E-EGR valve performance by test bench, the estimation of vehicle application was executed through the EGR map and CVS-75 test result measured on the chassis dynamometer.

Evaluation of E-EGR Valve for Light Duty Diesel Vehicle (소형디젤엔진의 배기가스 재순환용 전자식 밸브의 특성해석 및 차량적용 평가)

  • Song, Chang-Hoon;Lee, Jin-Wook;Jeong, Young-Il;Yang, Kab-Jin;Lee, Chang-Hoon;Lee, Hyun-Woo;Cha, Kyung-Ok
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.185-192
    • /
    • 2001
  • In this study the characteristics of E-EGR valve developed by UNICK were analyzed and the feasibility of application to vehicles were evaluated. Smart car(3L/100km, cdi version) and engine which is small-displacement size, 0.8-liter, of diesel passenger car developed from Mercedes-Benz were used for this experiment. It was installed a 3-cylinder turbo-charged light duty diesel engine with an electronic EGR valve. After the analysis and comparison of E-EGR valve performance under test benchs, the estimation of vehicle application was executed through the EGR map and CVS-75 test result measured on the chassis dynamometer.

  • PDF

A Study on the Electronic-ECR Valve for Light Duty Diesel Engine (소형 디젤 엔진용 배기 재순환용 전자식 밸브에 관한 연구)

  • 송창훈;이민호;정용일;차경옥
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.37-43
    • /
    • 2003
  • The exhaust gas recirculation (EGR) is needed for one of various strategies to reduce NOx emission. But to get the proper EGR rate, the intake and exhaust system become complicated, also application of EGR system is difficult because of the penalty in fuel consumption and the increase in particulate matter. This study is focused on the development of EGR valve using the electrical method. The effects of EGR on the characteristics of NOx, CO, CO2 emissions and particulate mater have been investigated using small-displacement size 0.8-liters engine of diesel passenger car operating at several loads and speeds. After the analysis and comparison between conventional E-EGR valve and developed E-EGR valve performance by test bench, the estimation of vehicle application was executed through the EGR map and CVS-75 test result measured on the chassis dynamometer.

A Study on the Characteristics of the Electronic EGR Valve for Gasoline Engine (가솔린엔진용 E-EGR 밸브 특성에 관한 연구)

  • Park, Cheol-Woong;Kim, Chang-Gi
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.127-133
    • /
    • 2008
  • Since the 1960's, exhaust gas recirculation(EGR) has been used effectively in spark ignition(SI) engines to control the exhaust emissions of the oxides of nitrogen(NOx). The most important requirements for the application of EGR systems to conventional SI engines are controllable flow rate and good dynamic response. In order to evaluate the characteristics of the electronic EGR valve, a test bench which is consisted of blower, heater, air flow meter and driving unit for electronic EGR valve was set up to simulate engine operating conditions. During the tests, the valve actuation parameters were controlled and the valve lifts and flow rates were measured to infer the characteristics of EGR valve. The results confirmed the capabilities of mathematical analysis and it seems that the correction for the valve lift and potentiometer output is necessary to achieve precise control of EGR rates.

An Experimental Study on the Development of E-EGR Valve for Light Duty Diesel Engine (소형 디젤엔진용 E-EGR밸브 개발에 관한 실험적 연구)

  • Song, Chang-Hoon;Woo, Se-Jong;Lee, Jin-Wook;Jeong, Young-Il;Cha, Kyung-Ok
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.928-933
    • /
    • 2001
  • EGR(Exhaust Gas Recirculation) is an effective strategy to control nitrogen oxides emissions from diesel engine. The EGR reduces $NO_x$ through lowering the oxygen concentration in the combustion chamber as well as through heat absorption. However, application of EGR system is difficult because of the penalty in fuel consumption and the increase in particulate matter. The engine used for the experimental was a 3-cylinder 0.8-liter turbo-charged light duty diesel engine with an electronic EGR valve. In this study, experiments were performed at variable vehicle speeds and loads on the chassis dynamometer. To evaluate the exhaust emissions with the EGR system testing was performed using cvs-75 mode test procedure. Results of the cvs-75 mode test achieve sufficiently to meet EURO3 standards.

  • PDF

A Study on Exhaust Gas Characteristics and Engine Performance of EGR Valve Installed Engine for Development of EGR Valve Test System (EGR 밸브 평가 장치 개발을 위한 EGR 장착 엔진 성능 및 배출 가스 특성 연구)

  • Na, D.H.;Ko, C.S.;Seo, H.J.;Lee, C.E.
    • Journal of Drive and Control
    • /
    • v.9 no.4
    • /
    • pp.52-57
    • /
    • 2012
  • In this study, in order to understand contents and ranges of design for the EGR Valve test system for improving quality and performance of EGR Valve, engine performance and exhaust gas characteristic of 3L-class diesel engine was analyzed. Experimental operation of engine performance test was performed with 50% engine load and 20% and 100% opening ratio of EGR Valve. From test of performance and exhaust gas characteristic of engine, torque output of engine and temperature and pressure of inlet and outlet of EGR Valve were measured. As a result, for design of EGR Valve test system, input fluid flow of EGR Valve must be set the same amount with exhaust gas flow that was below of engine speed of 2,500 rpm, and temperature of inlet of EGR Valve must be set under about $510^{\circ}C$. And the difference of temperature between inlet and outlet of EGR Valve must be over than about $200^{\circ}C$. Exhaust gas of inlet and outlet of EGR Valve were under 1 bar that was not considerable, and the difference of pressure between inlet and outlet of EGR Valve were under 1 bar that could not effect on mechanical operation of EGR Valve.

Design Change of E-EGR Valve to Suppress Carbon Deposit (E-EGR Valve 내부 Carbon Deposit 억제를 위한 형상연구)

  • Lee, Tae-Gon;Lee, Hyun-Chang;Park, Woo-Chul;Choi, Sin-Hyeong;Lee, Bong-Sub
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.531-533
    • /
    • 2009
  • 본 연구에서는 E-EGR Valve 내에 퇴적물이 쌓여 디젤엔진의 성능을 저하시키는 문제를 해결하기 위하여 CRDI 직분식 4기통 엔진에 장착된 E-EGR 밸브를 대상으로 형상변화에 따른 유동해석을 통하여 퇴적물 축적과 작동불량을 감소 시켜줄 새로운 형상을 제시하고자 하였다.

  • PDF

Optimization of Diesel Engine Performance with Dual Loop EGR considering Boost Pressure, Back Pressure, Start of Injection and Injection Mass (과급압력, 배압, 분사 시기 및 분사량에 따른 복합 방식 배기 재순환 시스템 적용 디젤 엔진의 최적화에 대한 연구)

  • Park, Jung-Soo;Lee, Kyo-Seung;Song, Soon-Ho;Chun, Kwang-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.136-144
    • /
    • 2010
  • Exhaust gas recirculation (EGR) is an emission control technology allowing significant NOx emission reduction from light-and heavy duty diesel engines. The future EGR type, dual loop EGR, combining features of high pressure loop EGR and low pressure loop EGR, was developed and optimized by using a commercial engine simulation program, GT-POWER. Some variables were selected to control dual loop EGR system such as VGT (Variable Geometry Turbocharger)performance, especially turbo speed, flap valve opening diameter at the exhaust tail pipe, and EGR valve opening diameter. Applying the dual loop EGR system in the light-duty diesel engine might cause some problems, such as decrease of engine performance and increase of brake specific fuel consumption (BSFC). So proper EGR rate (or mass flow) control would be needed because there are trade-offs of two types of the EGR (HPL and LPL) features. In this study, a diesel engine under dual loop EGR system was optimized by using design of experiment (DoE). Some dominant variables were determined which had effects on torque, BSFC, NOx, and EGR rate. As a result, optimization was performed to compensate the torque and BSFC by controlling start of injection (SOI), injection mass and EGR valves, etc.