• Title/Summary/Keyword: E-Beam Surface Finishing

Search Result 4, Processing Time 0.02 seconds

Effects of E-beam Irradiation on the Water-repellency and Washing Durability of the Water-repellent Finished Chemically-recycled PET(CR-PET) Fabrics (발수가공 시 전자빔 조사가 화학재생 폴리에스터 직물의 발수효과와 내세탁성에 미치는 영향)

  • Lee, Sun Young;Sohn, Han Guel;Lim, Sung Chan;Lee, Hyoung Dal;Lee, Seung Goo
    • Textile Coloration and Finishing
    • /
    • v.27 no.2
    • /
    • pp.119-125
    • /
    • 2015
  • The effects of e-beam irradiation on water-repellency and washing durability of water-repellent finished chemically-recycled PET(CR-PET) fabrics were investigated. As results, more doses of e-beam irradiation damaged the fabric surface more severely. It was thought because the high densed energy was formed, where the more e-beam was converged. The contact angle measurement showed that as the dose of e-beam irradiation increased, water wettability of the CR-PET fabric increased slightly. It was thought to be due that the surface etching by e-beam irradiation let water droplet permeate into the fabric surface better. The concentration of the water-repellent finishing agent was more important factor than curing temperature as finishing parameter. It was considered because the water-repellent finishing agent used in this study got to cure sufficiently at low temperature. Consequently, e-beam irradiation improved the washing durability of water-repellent finishing on the CR-PET fabrics.

Tailoring Surface Properties of Polyimides by Laser Direct Patterning (레이저 직접 패터닝에 의한 폴리이미드의 표면 특성 제어)

  • Yun Chan Hwang;Jeong Min Sohn;Jae Hui Park;Ki-Ho Nam
    • Textile Coloration and Finishing
    • /
    • v.35 no.2
    • /
    • pp.121-127
    • /
    • 2023
  • In this study, a comprehensive investigation was conducted on the morphological and property changes of laser-induced nanocarbon (LINC) as a function of laser process parameters. LINC was formed on the surfaces of polyimide films with different backbone structures under various process conditions, including laser power, scan speed, and resolution. Three different forms of LINC electrodes (i.e., continuous 3D porous graphene, wooly nanocarbon fibers, line cut) were formed depending on the laser power and scan speed. Furthermore, heteroatom doping induced from the chemical structure of the polyimide during laser patterning was found to be effective in modifying the electrical properties of LINC electrodes. The LINC surfaces exhibited different microstructures depending on the laser beam resolution under constant laser power and scan speed, allowing for controllable surface wettability. The correlation between the chemical structure of the polymer substrate, laser process parameters, and carbonized surface properties in this study is expected to be utilized as fundamental understanding for the manufacturing of next-generation carbon-based electronic devices.