• Title/Summary/Keyword: Dynamo-test

Search Result 62, Processing Time 0.025 seconds

Development of Oxidation Catalyst for Diesel Engine (디젤엔진 배기가스 정화용 산화촉매 개발)

  • 최경일;최용택;유관식
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.5
    • /
    • pp.529-537
    • /
    • 2000
  • Several Pt-based oxidation catalysts with different loading were prepared with various metal precursor solutions and characterized with H$_2$ chemisorption and TEM for Pt particle size. V was added to Pt-based catalyst for inhibiting SO$_2$oxidation reaction, as result, Pt-V/Ti-Si catalyst prepared by ERMS(Free Reduced Metal in Solution) method showed high enough activity and better inhibition on SO$_2$oxidation than Pt only catalyst. Optimum Pt particle size for diesel oxidation reaction turned out to be the size of around 20 nm. A prototype catalyst was prepared for light=duty diesel passenger car, and teated for the emission reduction performance with Korean regulation test mode(CVS-75 mode) on chassis dynamometer. The catalyst shows the performance reduction of 75~94% for CO, 53~67% for HC and 10~31% for PM. In the case of heavy-duty diesel catalyst, the domestic formal regulation teat mode D-13 was adopted for both Na engine and Turbo engine. The conversions of CO and THC are high enough(86% and 41%) while the reductions of NOx and PM are relatively low(3~11%).

  • PDF

An Experimental Study on the Power Transmission Efficiency and Frictional Noise of $MoS_2$-Bonded-Film Coated Reduction Gears (접착형 $MoS_2$고체윤활피막이 코팅된 감속기의 동력전달효율과 소음 특성에 관한 실험적 고찰)

  • 윤의성;공호성;한홍구;오재응
    • Tribology and Lubricants
    • /
    • v.12 no.3
    • /
    • pp.107-114
    • /
    • 1996
  • MoS$_{2}$ bonded film was applied to reduction gears, and its lubricating properties were experimentally evaluated in terms of the power transmission efficiency and the frictional noise with a dynamo-typed gear test rig. Tests were performed in both oil lubrication and dry condition where the rotating velocity and loading torque were varied. In dry condition, MoS$_{2}$ bonded films effected the power transmission efficiency to increase about 5%, and the frictional noise level to decrease about 6 dB under the test operating conditions. It well proved that MoS$_{2}$ bonded films were a very effective solid lubricant for reduction gears. In oil lubricating conditions, the frictional properties of the coated gears were mainly governed by the lubricating oil, and lubricating effects of MoS2 bonded films were not evident. The result suggested that lubricating effect of MoS$_{2}$ bonded films would be limited to prevent a damage of reduction gears in the initial run when they were used in oil lubrication conditions.

A Study on Squeal Noise Simulation considering the Friction Material Property Changes according to Temperature and Pressure in an Automotive Brake Corner Module (차량용 브레이크 코너 모듈에서 마찰재의 온도와 압력에 따른 물성치 변화를 고려한 스퀼 소음 해석 연구)

  • Cho, Hojoon;Kim, Jeong-Tae;Chae, Ho-Joong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.546-552
    • /
    • 2012
  • This paper is a study on squeal noise simulation under the consideration of temperature and pressure dependent material properties of friction material. For this, data of pressure and temperature dependent material properties of lining is achieved by using lining data base and exponential curve fit. Complex eigenvalue analysis is performed for predicting squeal noise frequency and instability and chassis dynamo test is performed for achieving squeal noise frequency, sound pressure level, occurrence temperature & pressure. Initial multi models are composed for considering complex interface conditions such as pad ear-clip, piston-housing and guide pin-torque member. The simulation result of base models is compared with the test result. Squeal noise simulation under the consideration of temperature and pressure dependent material properties of friction material is performed and analyzed using multi models. And additional condition is disc material property variation. Entire simulation conditions are combined and analyzed. Finally, this paper proposes direction of the warm squeal noise model.

  • PDF

Measuring methods for friction coefficient of disc-pad through running test (실차 주행시험을 통한 디스크-패드 마찰계수 측정방법)

  • Mok, Jin-Yong;Kim, Young-Guk;Kim, Seog-Won;Park, Chan-Kyoung;Kim, Ki-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.996-1001
    • /
    • 2008
  • To stop the train safely within the limited traveling distance and reduce its speed to the desired speed, it is necessary to guarantee the correct braking force. Presently, most trains have electric propulsion system and have adopted combined electrical and mechanical(friction) braking system. The friction coefficient between brake disc and pad is an important parameter in determining the mechanical braking force. In general, friction coefficient data of braking material have been taken through the dynamo-test in a laboratory. This study have suggested two methodologies that can measure friction coefficient of braking material on the train's actual operating condition. The first is the direct method; measure the brake force and the clamping force applied on the mechanical brake by using strain gauges installed at the brake disk, and then calculate it. The second method is the indirect method; obtain the friction coefficient by using the train load and the equivalent brake force which is deducted the longitudinal force, such as resistance to motion, gradient resistance and curved resistance, from the inertia force applied to the train.

  • PDF

A Study on the Structural Integrity Assessment of the Output Housing in Transmissions of a Tracked Vehicle (궤도차량 변속기 출력 하우징의 구조건전성 평가에 대한 연구)

  • Jung, Jae-Woong;Lee, Hee-Won;Moon, Tae-Sang;Gwon, Jun-Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.8-14
    • /
    • 2015
  • Transmission of a tracked vehicle designed for multiple functions such as steering, gear-shifting, and braking is a core component of heavy vehicle to which the power is transferred based on combined technology of various gears, bearing, and fluid machineries. Robustness and durability of transmission, however, have been issued due to a large number of driving units and sub-components inside its body. Particularly, transmission housing is important structure which supports the transmission, and is made of aluminum alloy. Thus, structural robustness against such mechanical loading or vibration must be attained. Structural reliability evaluation through FEM analysis can save time and cost of the actual tests. In this study, structural evaluation is conducted on output housing of transmission, which is core component of tracked vehicle, using the simulation program. In addition, transmission dynamo test is performed to evaluate structural robustness of the output housing against the vibration which can be produced during the transmission operation.

Analysis of the Fuel Consumption and the Development of the Analysis Model of the Hybrid Tractor (하이브리드 트랙터의 해석모델 개발 및 연료 소비량 분석)

  • Kim, Dongmyung;Kim, Soochul;Lee, Sangheon;Kim, Yongjoo;Jnag, Joosup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.3
    • /
    • pp.326-335
    • /
    • 2015
  • In this paper, is a study that analyzed the fuel consumption of hybrid tractor. Testing and analysis in order to evaluate the fuel consumption was performed. Analysis model was developed by using the SimulationX that is a commercial software. Also, map of the analysis model was modeled on the basis of test data. Test was performed using a dynamo device. The engine was tested the fuel consumption in accordance with the conditions on the load and throttle opening. The battery was tested the discharge and charge in accordance with the current amount. We verified the reliability of the analysis model by comparing the analysis results with the rest results. After considering the reliability of each analysis model was extended to the entire hybrid tractor system. To evaluate the efficiency using the analysis model, compared the fuel consumption of general tractor with hybrid tractor in the same load conditions.

A Study on the Ultra-Small Pendulum Generator Applicable to Wearable IT Device (웨어러블 IT 기기에 적용 가능한 초소형 진자 발전기에 관한 연구)

  • Jee, In-Ho;Shin, Seung-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.139-143
    • /
    • 2022
  • In this study, Among the electromagnetic induction power generation (EMG) techniques, the design specifications of the RFPM were set, and a suitable test prototype was manufactured through finite element analysis (FEM, 2D) required for characteristic calculation. In addition, a dedicated testing device (Dynamo-Tester) was designed and manufactured to measure and analyze the test prototype. The test product was measured with a test device and the result is analyzed to suggest a method that can be applied by generating as much output power as possible to charge the battery of the wearable IT device using actual kinetic energy of the human body. As a result of the test, the output power was 1.679W and the efficiency was 79.31% under the conditions of rotation speed of 780.9rpm, torque of 0.264kgf/cm, and load current of 73.6~73.9mA. Therefore, it was analyzed that it was possible to charge the wearable device with the output of the ultra-small RFPM pendulum generator.

The development of a wear resistant hard-metal tappet in diesel engines

  • Shim, D.S.;Song, K.C.;Kim, K.W.;Cho, J.W.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.401-402
    • /
    • 2002
  • Diesel engines have many sliding parts with solid body contact. For example, a piston-ring and a cylinder bore, a valve and a valve-seat, a cam and a valve tappet. These parts have a severe wear problem. during engine life times. During these times, the valve tappet has abnormal wear such as scuffing and pitting due to a high hertzian contact stress between the cam and the tappet. Excessive wear problems frequently occur to both the cam and the tappet. To solve these problems, we developed an advanced wear resistant tappet. The developed tappet consisted of a hard-metal wear part and a steel body. To increase a bonding strength, those two parts, were directly bonded to each other. Also to decrease a bonding temperature, we developed the composition of Ni-binder materials in the hard metal. To estimate the wear characteristics of the newly developed tappet, we performed wear tests and engine dynamo tests in order to compare them with a conventional Fe-base tappet. As a result, the newly developed tappet has better wear characteristics than those of the conventional tappet. In addition, we performed a 100,000km field-test, and the newly developed tappet showed much improved wear resistance.

  • PDF

Development of the Simulator for Estimating Intake Noise of Vehicle and Its Improvement (Part I) (자동차 흡기소음평가 시뮬레이터 개발 및 이를 이용한 소음저감 성능개선)

  • Oh, Jae-eung;Han, kwang-Hee;Hong, Jeong-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.391-398
    • /
    • 1998
  • The intake noise, a major source of vehicle noises, has rapidly become a noticeable, and has been studied to reduce the level. Traditionally, the intake system has been developed through the road test and the experiment using a engine dynamo, namely, the trial and error process. This approach require very high cost and long time consuming to develop the system. In this study, the simulator which had a speaker in the cylinder head was presented. It was easy to analyze the acoustic characteristic of the intake system in laboratory environment. This study presented a improvement to reduce the level of the intake noise using the Transfer Matrix Method and NIT/SYSNOISE, FE analysis commercial software. It was to select optimum position of a resonator and verified by the simulator. This simulator can be used early in the design stage of development of the intake system.

Application of Flexible-Type Sintered Brake Pads (플렉서블 타입 소결 브레이크 패드의 적용 연구)

  • Kim, Soung-Kwon;Kim, Sang-Ho;Kwon, Seok-Jin;Lee, Hi-Sung
    • Tribology and Lubricants
    • /
    • v.27 no.1
    • /
    • pp.19-24
    • /
    • 2011
  • Metallic sintered brake pads are often applied to mid/high speed train due to their high strength and thermal characteristics. Imbalance contact between discs and pads can greatly influence the life span, one sided wear, discs attack/crack and threat the safety of the train during operation. In this research, we analyzed pressure/temperature distribution between brake pads and disks. Analyzed data had been verified and modified to conduct further tests of flexible brake pads with small/full-scale dynamo test. Flexible brake pads were installed to high speed train to conduct further tests to identify the differences between rigid brake pads and flexible brake pads. In result, Flexible brake pads showed outstanding disk thermal stability, one sided wear, noise and wear rate than rigid brake pad.