• 제목/요약/키워드: Dynamics test

검색결과 1,241건 처리시간 0.033초

다중 펌프 흡수정에서 발생하는 Vortex 수치 해석에 관한 연구 (Numerical Analysis on the Flow Vortex in a Multi Pump Intake using a Pump Sump Model)

  • 박노석;김성수;현상락;박종호;안영석
    • 상하수도학회지
    • /
    • 제24권2호
    • /
    • pp.211-217
    • /
    • 2010
  • In order to suggest the methodology for achieving anti-vortex within multi pump intake well, the field test and CFD(Computational Fluid Dynamics) simulation were conducted. The filed test were carried out for domestic W_multi pump intake well according to usual operation condition through the naked observation. From the results, operating #4, #5, #8 and 9# pumps, the vortex and swirl occurred above #4 and #9 intake pipe within two wells. For qualitative analysis, a commercial CFD code, using sump model, was used to predict the vortex generation within the selected pump intake facility accurately. The analysed results by CFD show that the vortex structure and location are in accordance with the results of the field test.

VDC를 위한 HILS 시스템 개발에 관한 연구 (Development of HILS System for VDC)

  • 박기홍;허승진
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.184-191
    • /
    • 2003
  • HILS(Hardware-ln-the-Loop Simulation) is a scheme that incorporates hardware components of primary concern in the numerical simulation environment. Due to its advantages over actual vehicle test and pure simulation, HILS is being widely accepted in automotive industries as test benches for vehicle control units. Developed in this study is a HILS system for VDC(Vehicle Dynamics Control) with a valve control system that modulates the brake pressures at low wheels. Two VDC control logics were developed and tested in the HILS system. Test results under various driving conditions are presented in this paper.

정압베어링을 적용한 터보팽창기의 회전체 동역학 해석 및 구동시험 (Rotordynamic Analysis and Operation Test of Turbo Expander with Hydrostatic Bearing)

  • 이동현;김병옥;정준하;임형수
    • Tribology and Lubricants
    • /
    • 제38권2호
    • /
    • pp.33-40
    • /
    • 2022
  • In this study, we present rotor dynamic analysis and operation test of a turbo expander for a hydrogen liquefaction plant. The turbo expander consists of a turbine and compressor wheel connected to a shaft supported by two hydrostatic radial and thrust bearings. In rotor dynamic analysis, the shaft is modeled as a rigid body, and the equations of motion for the shaft are solved using the unsteady Reynolds equation. Additionally, the operating test of the turbo expander has been performed in the test rig. Pressurized helium is supplied to the bearings at 8.5 bar. Furthermore, we monitor the shaft vibration and flow rate of the helium supplied to the bearings. The rotor dynamic analysis result shows that there are two critical speeds related with the rigid body mode under 40,000 rpm. At the first critical speed of 36,000 rpm, the vibration at the compressor side is maximum, whereas that of the turbine is maximum at the second critical speed of 40,000 rpm. The predicted maximum shaft vibration is 3 ㎛, whereas sub-synchronous vibration is not presented. The operation test results show that there are two critical speeds under the rated speed, and the measured vibration value agrees well with predicted value. The measured flow rate of the helium supplied to the bearing is 2.0 g/s, which also agrees well with the predicted data.

공동주택 개발 사업의 비용분석을 위한 시스템 다이내믹스 모델 개발 연구 (Development of a System Dynamics Model for Cost Analysis of Housing Development Projects)

  • 김근우;윤석헌
    • 한국건축시공학회지
    • /
    • 제11권3호
    • /
    • pp.221-228
    • /
    • 2011
  • 본 연구에서는 아파트 개발 사업의 타당성 분석을 위한 시스템다이내믹스 모델을 개발하고 사례연구를 수행하고자 하였다. 연구에서는 기존의 아파트개발 사업 사례와 연구 프로젝트 자료들을 근거로 현금흐름 구성요소들을 도출하였고, 시스템사고 방법과 시스템다이내믹스 모델을 사용하여 이들 요소의 상호 영향관계를 찾고자 노력하였다. 연구에서는 모델을 정의하고 분석하기 위해 Vensim이라는 시스이내믹스 소프트웨어를 사용하였다. 이렇게 도출된 모델을 검증하기 위해 사례 연구를 진행하였으며, 사례연구 결과 연구에서 개발한 모델이 실제 프로젝트에 적용이 가능할 것으로 판단되었다. 연구에서 도출된 모델은 아파트 개발사업자들이 프로젝트의 초기단계에 프로젝트 파이낸싱과 관련한 의사결정에 도움이 될 수 있을 것으로 판단된다.

자유항주모형시험과 회귀분석을 통한 선체 동역학 모델의 개발 (Development of Ship Dynamics Model by Free-Running Model Tests and Regression)

  • 김기원;김호용;최성은;나기인;이혁;서정화
    • 대한조선학회논문집
    • /
    • 제59권3호
    • /
    • pp.173-182
    • /
    • 2022
  • The present study suggests a procedure of establishing a ship dynamics modeling by regression of free-running model test results. The hydrodynamic force and moment of the whole model ship is derived from the low-pass filtered acceleration in the turning circle and zigzag maneuver tests. Force and moment of the propeller and rudder are separated from that of the whole ship to acquire the hull force and moment terms, based on the principles of the component model. The low-pass filter frequency is verified in prior to dynamics modeling, to find the threshold frequency of 2.5 Hz. The dynamics modeling of the hull is compared with the component modeling by captive model tests. Because of strong correlation between sway velocity, yaw angular velocity, and heel angle, each maneuvering coefficient is not able to be validated, but the whole modeling shows good agreement with the captive model tests.

Verification of CFD analysis methods for predicting the drag force and thrust power of an underwater disk robot

  • Joung, Tae-Hwan;Choi, Hyeung-Sik;Jung, Sang-Ki;Sammut, Karl;He, Fangpo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권2호
    • /
    • pp.269-281
    • /
    • 2014
  • This paper examines the suitability of using the Computational Fluid Dynamics (CFD) tools, ANSYS-CFX, as an initial analysis tool for predicting the drag and propulsion performance (thrust and torque) of a concept underwater vehicle design. In order to select an appropriate thruster that will achieve the required speed of the Underwater Disk Robot (UDR), the ANSYS-CFX tools were used to predict the drag force of the UDR. Vertical Planar Motion Mechanism (VPMM) test simulations (i.e. pure heaving and pure pitching motion) by CFD motion analysis were carried out with the CFD software. The CFD results reveal the distribution of hydrodynamic values (velocity, pressure, etc.) of the UDR for these motion studies. Finally, CFD bollard pull test simulations were performed and compared with the experimental bollard pull test results conducted in a model basin. The experimental results confirm the suitability of using the ANSYS-CFX tools for predicting the behavior of concept vehicles early on in their design process.

Flexible CFD meshing strategy for prediction of ship resistance and propulsion performance

  • Seo, Jeong-Hwa;Seol, Dong-Myung;Lee, Ju-Hyun;Rhee, Shin-Hyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제2권3호
    • /
    • pp.139-145
    • /
    • 2010
  • In the present study, we conducted resistance test, propeller open water test and self-propulsion test for a ship's resistance and propulsion performance, using computational fluid dynamics techniques, where a Reynolds-averaged Navier-Stokes equations solver was employed. For convenience of mesh generation, unstructured meshes were used in the bow and stern region of a ship, where the hull shape is formed of delicate curved surfaces. On the other hand, structured meshes were generated for the middle part of the hull and the rest of the domain, i.e., the region of relatively simple geometry. To facilitate the rotating propeller for propeller open water test and self-propulsion test, a sliding mesh technique was adopted. Free-surface effects were included by employing the volume of fluid method for multi-phase flows. The computational results were validated by comparing with the existing experimental data.

다물체동역학기법을 이용한 고급버스의 전차량 시뮬레이션과 시험의 매칭 (Matching Simulations with Tests of Cruise Bus Using Multi-body Dynamics Technology)

  • 최소해;박성준;이정한;유완석;손정현
    • 한국자동차공학회논문집
    • /
    • 제18권6호
    • /
    • pp.14-22
    • /
    • 2010
  • In this study, a large bus is tested for measuring the steering response based on the slarom test and step steer test. A full car model by using ADAMS/Car is established for computer simulation. For bus modeling, user defined templates are made and used in the simulation. Simulation results according to the slarom and step steer test are compared to the physical experiments, in which several sensors are installed to measure vehicle responses. The results obtained from the comparison show a good agreement with regard to the vehicle velocity and steering angle.

Maneuvering Hydrodynamic Forces Acting on Manta-type UUV Using CFD

  • Lee, Seong-Eun;Lee, Sung-Wook;Bae, Jun-Young
    • 한국해양공학회지
    • /
    • 제34권4호
    • /
    • pp.237-244
    • /
    • 2020
  • In this study, we investigate surge force, heave force, and pitch moment, which are vertical plane hydrodynamics acting on Manta-type unmanned underwater vehicles (UUVs), using a model test and computational fluid dynamics (CFD) simulation. Assessing the maneuvering hydrodynamic characteristic of an underwater glider in the initial design stage is crucial. Although a model test is the best approach for obtaining the maneuvering hydrodynamic derivatives for underwater vehicles, numerical methods, such as Reynolds averaged Navier-Stokes (RANS) equations, have been used owing to their efficiency in terms of time and cost. Therefore, we conducted an RANS-based CFD calculation and a model test for Manta-type UUVs. In addition, we conducted a validation study through a comparison with a model test conducted at a circular water channel (CWC) in Korea Maritime & Ocean University Furthermore, two RANS solvers (Star-CCM+ and OpenFOAM) were used and compared. Finally, the maneuvering hydrodynamic forces obtained from the static drift and resistance tests for a Manta-type UUV were presented.

가상계측기반 실시간 영상유도 자동비행 시스템 구현 및 무인 로터기를 이용한 비행시험 (Implementation of Virtual Instrumentation based Realtime Vision Guided Autopilot System and Onboard Flight Test using Rotory UAV)

  • 이병진;윤석창;이영재;성상경
    • 제어로봇시스템학회논문지
    • /
    • 제18권9호
    • /
    • pp.878-886
    • /
    • 2012
  • This paper investigates the implementation and flight test of realtime vision guided autopilot system based on virtual instrumentation platform. A graphical design process via virtual instrumentation platform is fully used for the image processing, communication between systems, vehicle dynamics control, and vision coupled guidance algorithms. A significatnt ojective of the algorithm is to achieve an environment robust autopilot despite wind and an irregular image acquisition condition. For a robust vision guided path tracking and hovering performance, the flight path guidance logic is combined in a multi conditional basis with the position estimation algorithm coupled with the vehicle attitude dynamics. An onboard flight test equipped with the developed realtime vision guided autopilot system is done using the rotary UAV system with full attitude control capability. Outdoor flight test demonstrated that the designed vision guided autopilot system succeeded in UAV's hovering on top of ground target within about several meters under geenral windy environment.