• Title/Summary/Keyword: Dynamics modeling

Search Result 1,425, Processing Time 0.177 seconds

End-to-end system level modeling and simulation for medium-voltage DC electric ship power systems

  • Zhu, Wanlu;Shi, Jian;Abdelwahed, Sherif
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.1
    • /
    • pp.37-47
    • /
    • 2018
  • Dynamic simulation is critical for electrical ship studies as it obtains the necessary information to capture and characterize system performance over the range of system operations and dynamic events such as disturbances or contingencies. However, modeling and simulation of the interactive electrical and mechanical dynamics involves setting up and solving system equations in time-domain that is typically time consuming and computationally expensive. Accurate assessment of system dynamic behaviors of interest without excessive computational overhead has become a serious concern and challenge for practical application of electrical ship design, analysis, optimization and control. This paper aims to develop a systematic approach to classify the sophisticated dynamic phenomenon encountered in electrical ship modeling and simulation practices based on the design intention and the time scale of interest. Then a novel, comprehensive, coherent, and end-to-end mathematical modeling and simulation approach has been developed for the latest Medium Voltage Direct Current (MVDC) Shipboard Power System (SPS) with the objective to effectively and efficiently capture the system behavior for ship-wide system-level studies. The accuracy and computation efficiency of the proposed approach has been evaluated and validated within the time frame of interest in the cast studies. The significance and the potential application of the proposed modeling and simulation approach are also discussed.

Trends in Materials Modeling and Computation for Metal Additive Manufacturing

  • Seoyeon Jeon;Hyunjoo Choi
    • Journal of Powder Materials
    • /
    • v.31 no.3
    • /
    • pp.213-219
    • /
    • 2024
  • Additive Manufacturing (AM) is a process that fabricates products by manufacturing materials according to a three-dimensional model. It has recently gained attention due to its environmental advantages, including reduced energy consumption and high material utilization rates. However, controlling defects such as melting issues and residual stress, which can occur during metal additive manufacturing, poses a challenge. The trial-and-error verification of these defects is both time-consuming and costly. Consequently, efforts have been made to develop phenomenological models that understand the influence of process variables on defects, and mechanical/ electrical/thermal properties of geometrically complex products. This paper introduces modeling techniques that can simulate the powder additive manufacturing process. The focus is on representative metal additive manufacturing processes such as Powder Bed Fusion (PBF), Direct Energy Deposition (DED), and Binder Jetting (BJ) method. To calculate thermal-stress history and the resulting deformations, modeling techniques based on Finite Element Method (FEM) are generally utilized. For simulating the movements and packing behavior of powders during powder classification, modeling techniques based on Discrete Element Method (DEM) are employed. Additionally, to simulate sintering and microstructural changes, techniques such as Monte Carlo (MC), Molecular Dynamics (MD), and Phase Field Modeling (PFM) are predominantly used.

Analysis of PIG Dynamics through Curved Section in Natural Gas Pipeline (천연가스 배관 곡관부에서의 피그 동적 거동 해석)

  • Kim D. K.;Nguyen T. T.;Yoo H. R.;Rho Y. W.;Kho Y.T.;Kim S. B.
    • Journal of the Korean Institute of Gas
    • /
    • v.6 no.1 s.17
    • /
    • pp.1-9
    • /
    • 2002
  • This paper presents simple models for flow and the PIG dynamics when it passes through a $90^{\circ}$ curved section of pipeline. The simulation has been done with two different operational boundary conditions. The solution fur non-linear hyperbolic partial equations for flow is given by using MOC. The Runge-Kuta method is used to solve the initial condition equation fur flow and the PIG dynamics equation. The simulation results show that the proposed model and solution can be used fur estimating the PIG dynamics when the pig runs in the pipeline including curved section. In this paper, dynamic modeling and its analysis for the PIG flow through $90^{\circ}$ curved pipe with compressible and unsteady flow are studied. The PIG dynamics model is derived by using Lagrange equation under assumption that it passes through 3 different sections in the curved pipeline such that it moves into, inside and out of the curved section. The downstream and up stream flow dynamics including the curved sections are solved using MOC. The effectiveness of the derived mathematical models is estimated by simulation results fur a low pressure natural gas pipeline including downward and upward curved sections. The simulation results show that the proposed model and solution can be used for estimating the PIG dynamics when we pig the pipeline including curved section.

  • PDF

건설업에 있어서의 컴퓨터 이용

  • 이병해
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.3-20
    • /
    • 1991
  • This paper wil1 describe the background and "dynamics" of system integration of construction industry. It wil1 address questions such as, why the construction industry needs to integrate work process through computer based system. Then it describes about 3D modeling, project, management, procurement, engineering data bases, construction CAE. Also the paper presents recent project experience at school environment.

  • PDF

Introduction to Combustion Instability Modeling Using Flame Transfer Function (화염전달함수를 이용한 연소불안정 모델링 기법 소개)

  • Kim, Daesik
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.71-72
    • /
    • 2014
  • The current paper introduce the flame transfer function calculation results using CFD in order to quantify the heat release fluctuations in a lean premixed gas turbine combustor. Comparisons of the modeled and measured flame shapes were made using the optimized heat transfer conditions.

  • PDF