• Title/Summary/Keyword: Dynamic triaxial tests

Search Result 75, Processing Time 0.025 seconds

A Study on Magnitude Scaling Factors and Screening Limits of Liquefaction Potential Assessment in Moderate Earthquake Regions (중진지역에 적합한 액상화 평가 생략기준 및 지진규모 보정계수에 관한 연구)

  • Park Keun-Bo;Park Young-Geun;Choi Jae-Soon;Kim Soo-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.127-140
    • /
    • 2004
  • Conventional methods for the assessment of liquefaction potential were primarily for areas of severe earthquake zones (M=7.5) such as North America and Japan. Detailed earthquake related researches in Korea started in 1997, including development of the seismic design standards for port and harbour structures, which was later completed in 1999. Because most contents in the guidelines were quoted through literature reviews from North America and Japan, which are located in strong earthquake region, those are not proper in Korea, a moderate earthquake region. This requires further improvement of the present guidelines. Considering earthquake hazard data in Korea, use of laboratory tests based on irregular earthquake motion appears to be effective to reflect the dynamic characteristics of soil more realistically than those using simplified regular loading. In this study, cyclic triaxial tests using irregular earthquake motions are performed with different earthquake magnitudes, relative densities, and fines contents. Assessment of liquefaction potential in moderate earthquake regions is discussed based on various laboratory test results. Effects of these components on dynamic behavior of soils are discussed as well. From the test results, screening limits and magnitude scaling factors to determine the soil liquefaction resistance strength in seismic design were re-investigated and proposed using normalized maximum stress ratios under real irregular earthquake motions.

A New Methodology for the Assessment of Liquefaction Potential Based on the Dynamic Characteristics of Soils (I) : A Proposal of Methodology (지반의 동적특성에 기초한 액상화 평가법(I) : 이론제안)

  • 최재순;홍우석;박인준;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.91-99
    • /
    • 2002
  • In this study, a new methodology for the assessment of liquefaction potential is proposed. Since there is no data on the liquefaction damage in Korea, the dynamic behavior of fully saturated soils is characterized through laboratory dynamic tests. There are two experimental parameters related to the soil liquefaction resistance characteristics : the one is the index of disturbance determined by $G/G_{max}$ curve and the other is a plastic shear strain trajectory evaluated from stress-strain curve. The proposed methodology takes advantage of the site response analysis based on real earthquake records to determine the driving effect of earthquake. In the evaluation of liquefaction resistance characteristics, it is verified experimentally that the magnitude of cyclic shear stress has no influence on the critical value of plastic shear strain trajectory at which the initial liquefaction occurs. Cyclic triaxial tests under the conditions of various cyclic stress ratios and torsional shear tests are carried out far the purpose of verification. Through this study, the critical value at the initial liquefaction is found unique regardless of the cyclic stress ratio. It is also f3und that liquefaction resistance curve drawn with disturbance and plastic shear strain trajectory can simulate the behavior of fully saturated soils under dynamic loads.

Evaluation of Particle Size Effect on Dynamic Behavior of Soil-pile System (모래 지반의 입자크기가 지반-말뚝 시스템의 동적 거동에 미치는 영향 평가)

  • Yoo, Min-Taek;Yang, Eui-Kyu;Han, Jin-Tae;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.188-197
    • /
    • 2010
  • This paper presents experimental results of a series of 1-g shaking table model tests performed on end-bearing single piles and pile groups to investigate the effect of particle size on the dynamic behavior of soil-pile systems. Two soil-pile models consisting of a single-pile and a $4{\times}2$-pile group were tested twice; first using Jumoonjin sand, and second using Australian Fine sand, which has a smaller particle size. In the case of single-pile models, the lateral displacement was almost within 1% of pile diameter which corresponds to the elastic range of the pile. The back-calculated p-y curves show that the subgrade reaction of the Jumoonjin-sand-model ground was larger than that of the Australian Fine-sand-model ground at the same displacement. This phenomenon means that the stress-strain behavior of Jumoonjin sand was initially stiffer than that of Australian Fine sand. This difference was also confirmed by resonant column tests and compression triaxial tests. And the single pile p-y backbone curves of the Australian fine sand were constructed and compared with those of the Jumoonjin sand. As a result, the stiffness of the p-y backbone curves of Jumunjin sand was larger than those of Australian fine sand. Therefore, using the same p-y curves regardless of particle size can lead to inaccurate results when evaluating dynamic behavior of soil-pile system. In the case of the group-pile models, the lateral displacement was much larger than the elastic range of pile movement at the same test conditions in the single-pile models. The back-calculated p-y curves in the case of group pile models were very similar in both sands because the stiffness difference between the Jumoonjin-sand-model ground and the Australian Fine-sand-model ground was not significantly large at a large strain level, where both sands showed non-linear behavior. According to a series of single pile and group pile test results, the evaluation group pile effect using the p-multiplier can lead to inaccurate results on dynamic behavior of soil-pile system.

  • PDF

Resilient Moduli of Sub-ballast and Subgrade Materials (강화노반 및 궤도하부노반 재료의 회복탄성계수)

  • Park, Chul-Soo;Choi, Chan-Yong;Choi, Choong-Lak;Mok, Young-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.1
    • /
    • pp.54-60
    • /
    • 2008
  • In the trackbed design using elastic multilayer model, the stress-dependent resilient modulus $(E_R)$ is an important input parameter, that is, reflects substructure performance under repeated traffic loading. However, the evaluation method for resilient modulus using repeated loading triaxial test is not fully developed for practical purpose, because of costly equipment and the significantly fluctuated values depending on the testing equipment and laboratory personnel. The this study, the paper will present an indirect method to estimate the resilient modulus using dynamic properties. The resilient modulus of crushed stone, which is the typical material of sub-ballast, was calculated with the measured dynamic properties and the range of stress level of the sub-ballast, and approximated with the power model combined with bulk and deviatoric stresses. The resilient modulus of coarse grained material decreases with increasing deviatoric stress at a confining pressure, and increases with increasing bulk stress. Sandy soil (SM classified from Unified Soil Classification System) of subgrade was also evaluated and best fitted with the power model of deviatoric stress only.

Evaluation of Dynamic Ground Properties of Pohang Area Based on In-situ and Laboratory Test (현장실험 및 동적실내실험을 이용한 포항지역 동적 지반특성 평가)

  • Kim, Jongkwan;Kwak, Tae-Young;Han, Jin-Tae;Hwang, Byong-Youn;Kim, Ki-Seog
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.9
    • /
    • pp.5-20
    • /
    • 2020
  • In 2017, after the Pohang earthquake, liquefaction phenomena were firstly observed after the observation of domestic earthquake by epicenter. In this study, various in-situ tests and laboratory tests were performed to determine the dynamic properties in (1) Songlim Park, (2) Heunghae-eup, Mangcheon-ri and (3) Heungan-ri, Pohang. As a site investigation, the standard penetration test (SPT), cone penetration test (CPT), multichannel analysis of surface wave (MASW), density logging, downhole test, and electrical resistivity survey were performed. In addition, cyclic triaxial test against sampled sand from site was also conducted. Based on the result, high ground water level and loose sand layer in shallow depth were observed for all sites. In addition, liquefaction resistance ratio of soil sampled from Songlim park was lower than those of Jumunjin sand, Toyoura sand, and Ottawa sand.

Dynamic Properties and Settlement Characteristics of Korea Weathered Granite Soils (화강풍화토의 동적 물성치와 침하특성에 대한 연구)

  • Park, Jong-Gwan;Kim, Yeong-Uk;Lee, In-Mo
    • Geotechnical Engineering
    • /
    • v.9 no.2
    • /
    • pp.5-14
    • /
    • 1993
  • Weathered granite soil is the most representative as a surface soil in Korea. In this paper, the dynamic properties and settlement characteristics of Korea granite soil are studied through the dynamic triaxial compression tests. The dynamic characteristics are very important on the analysis of the foundations under dynamic loading such as machine vibration and earthquake. Soil samples having different grain sixtes were prepared at the relative densities between 80oA and 90oA and tested to measure shear moduli and damping ratios at each level of shear strain. The measured shear moduli of weathered granite soils showed large variations according to the grain sizes, confining pressures, relative densities and shear strains. Sandy weathered granite had a little larger dynamic properties than the average values of the sand studied by Seed and Idriss. Pot the well compacted granite soils, little residual settlements occured due to dynamic loading.

  • PDF

Seismic Response Characteristics of Layered Ground Considering Viscoelastic Effects of Clay (점성토의 점탄성 특성을 고려한 층상지반의 지진응답특성)

  • Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.3
    • /
    • pp.19-26
    • /
    • 2011
  • In order to estimate the viscous effects of clay over a wide range of strain levels, we confirmed the performance of a viscoelastic-viscoplastic constitutive model by simulating cyclic undrained triaxial tests to determine the cyclic strength and deformation characteristics of natural marine clay. The viscoelastic-viscoplastic constitutive model was then incorporated into an effective stress-based seismic response analysis to estimate the effects of an intermediate clay layer on the behavior of sand layers. Seismic response was simulated by the cyclic viscoelastic-viscoplastic constitutive model created with data recorded at Rokko Island, Kobe, Japan. The results show that a cyclic viscoelastic-viscoplastic constitutive model can provide a good description of dynamic behavior including viscoelastic effects, within a small strain range.

A Study on Clay Behavior Characteristics Based on Non-Linear Kinematic Hardening Rule (비선형 이동경화법칙에 기초한 점성토의 거동 특성)

  • Kim, Yong-Seong
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.4
    • /
    • pp.114-122
    • /
    • 2002
  • Up to now, many constitutive models for clay have been proposed and studied based on the elasto-plastic or elasto-viscoplastic theory and it has been recognized that the effect of time on the loading process is a salient feature. In the present study, cyclic behavior characteristics of clay was studied with a viscoelastic-viscoplastic constitutive model for clay based on the non-linear kinematic hardening rule. In order to examine the behavior of clay several cyclic untrained triaxial tests and also their numerical simulations were performed. As results of that, it was found that the proposed model can well describe cyclic behaviors of clay such as frequency dependent characteristics, and have the high feasibility of numerical simulation for dynamic analysis.

Experimental Study on the Effect of Particle Size Distribution of Soil on the Liquefaction Resistance Strength (입도분포가 액상화 저항강도에 미치는 영향에 관한 실험적 연구)

  • Seo Kyung-Bum;Choi Mun-Gyu;Kim Soo-Il;Park Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.7
    • /
    • pp.13-20
    • /
    • 2005
  • For experimental study on the effect of particle size distribution on the liquefaction resistance strength, particle size distribution curves of the dredged soil were investigated. In this process, four mean particle sizes and three uniformity coefficients were defined representatively and twelve representative particle size distribution curves which have different mean particle size and uniformity coefficient, were defined and manufactured by using the real dredged river soil. Cyclic triaxial tests and resonant column tests were carried out to analyze the effect of mean particle size and uniformity coefficient on the liquefaction resistance strength and dynamic characteristics.

Analysis of Liquefaction using Stress Path in Silty Sand Grounds (실트질 모래지반의 응력경로를 이용한 액상화 분석)

  • Lee, Song;Kim, Tae-Hwoon;Rhee, Min-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.239-246
    • /
    • 2000
  • It has been generally much fine contents in West Coast of Korea. When cyclic shear stress causing liquefaction was estimated as using cyclic triaxial tests in these grounds, it didn't appear linear relations between deviator stress and confining stress where σ'₃ was more than 150 kpa. Namely, due to no normalization of cyclic shear stress ratio, the errors of this is increased. Therefore, more confining stress is increased, more increment of deviator stress is decreased. So, using linear relations between tanø'/sub d/ of dynamic internal friction angle and CSR where σ'₃ was less than 150 kpa, liquefaction of these grounds was evaluated. Also, as doing detail evaluation which had carried response analysis of earthquake, this appeared good results which was well compatible with empirical methods using N-value of SPT. It was thought that these result evaluated vulnerable liquefaction area more correct than existing methods. Also, characteristics of liquefaction in West Coast grounds was compared with clean sands, with analysis of behavior of pore pressure ratio and axial strain affected by fine contents, as cyclic loading was applied.

  • PDF