• Title/Summary/Keyword: Dynamic thermal load calculation

Search Result 17, Processing Time 0.023 seconds

Analysis of Connecting Rod Bearings Using Mass-Conserving Boundary Condition (유량 보존 경계 조건을 적용한 커넥팅 로드 베어링의 성능 해석)

  • 김병직;김경웅
    • Tribology and Lubricants
    • /
    • v.14 no.3
    • /
    • pp.39-45
    • /
    • 1998
  • Reynolds equation, which describes behavior of fluid film in journal bearings, basically satisfies mass conservation. But, boundary conditions usually used with this equation, e.g. half Sommerfeld or Reynolds boundary conditions, cannot fulfill this natural law of conservation. In the case of connecting rod bearing, where applied load is dynamic and its magnitude is relatively large, such unrealistic boundary conditions have serious influence on calculation results, especially on lubricant flow rate or power disspation which are important parameters in thermal analysis. In this paper, mass-conserving boundary condition was applied in the finite element analysis of connecting rod bearings. Lubricant flow rate and power dissipation rate were calculated together with journal center locus, minimum film thickness and maxmium film pressure. These computation results were compared with those of the case of Reynolds boundary condition. Balance between inlet and outlet flow rate was well achieved in the case of mass-conserving boundary condition.

EHL Analysis of Connecting Rod Bearings Using Mass-Conserving Boundary Condition (유량 보존 경계 조건을 적용한 커넥팅 로드 베어링의 EHL 해석)

  • 김병직;김경웅
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.212-217
    • /
    • 1998
  • Reynolds equation, which describes behavior of fluid film in journal bearing, basically satisfies mass conservation. But, boundary conditions usually used with this equation, e.g. half Sommerfeld or Reynolds boundary conditions, cannot fulfill this natural law of conservation. In the case of connecting rod bearing, where applied load is dynamic and its magnitude is relatively large, such unrealistic boundary conditions have serious influence on calculation results, especially on lubricant flow rate or power dissipation which are important parameters in thermal analysis. Another important factor in the analysis of connecting rod bearing is elastic deformation of bearing support structure which is relatively flexible. In this paper, EHL analysis of connecting rod beating is performed using mass-conserving boundary condition. Elastic deformation of bearing support structure and application of mass-conserving boundary condition have significant effects on the performances of connecting rod bearing.

  • PDF

EFFECTS OF AN ORIFICE-TYPE FLOW RESTRICTOR ON THE TRANSIENT THERMAL-HYDRAULIC RESPONSE OF THE SECONDARY SIDE OF A PWR STEAM GENERATOR TO A MAIN STEAM LINE BREAK (가압경수로 주증기관 파단시 증기발생기 2차측 과도 열수력 응답에 미치는 오리피스형 유량제한기의 영향)

  • Jo, J.C.;Min, B.K.
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.87-93
    • /
    • 2015
  • In this study, a numerical analysis was performed to simulate the thermal-hydraulic response of the secondary side of a steam generator(SG) model equipped with an orifice-type SG outlet flow restrictor to a main steam line break(MSLB) at a pressurized water reactor(PWR) plant. The SG analysis model includes the SG upper steam space and the part of the main steam pipe between the SG outlet and the broken pipe end. By comparing the numerical calculation results for the present SG model to those obtained for a simple SG model having no flow restrictor, the effects of the flow restrictor on the thermal-hydraulic response of SG to the MSLB were investigated.

Thermal-magneto-mechanical stability analysis of single-walled carbon nanotube conveying pulsating viscous fluid

  • R. Selvamani;M. Mahaveer Sree Jayan;Marin Marin
    • Coupled systems mechanics
    • /
    • v.12 no.1
    • /
    • pp.21-40
    • /
    • 2023
  • In thisstudy, the vibration problem ofthermo elastic carbon nanotubes conveying pulsating viscous nano fluid subjected to a longitudinal magnetic field is investigated via Euler-Bernoulli beam model. The controlling partial differential equation of motion is arrived by adopting Eringen's non local theory. The instability domain and pulsation frequency of the CNT is obtained through the Galerkin's method. The numerical evaluation of thisstudy is devised by Haar wavelet method (HWM). Then, the proposed model is validated by analyzing the critical buckling load computed in presentstudy with the literature. Finally, the numerical calculation ofsystem parameters are shown as dispersion graphs and tables over non local parameter, magnetic flux, temperature difference, Knudsen number and viscous parameter.

A Study on the Limitation and Improvement of Simple Window Model applied to EnergyPlus (EnergyPlus에 적용된 Simple Window Model의 한계와 개선에 관한 연구)

  • Kim, Tae Ho;Ko, Sung Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.10
    • /
    • pp.515-529
    • /
    • 2017
  • EnergyPlus, which is widely used in various fields, provides Simple Window Model, a window model that can be used practically. However, the results of building load using the model are different from those of the standard model. The main cause of the deviation by Simple Window Model was analyzed to be due to the assumption that all windows were considered as single layer. The purpose of this study is to propose a window model that improves the cause of deviation by Simple Window Model and can be easily calculated from the algebraic relations. The proposed window model solved the heat balance equation algebraically by using seven window characteristic coefficients. The coefficient relationships consisted of the heat transmission coefficient and solar heat gain coefficient as input parameters make practical use and calculation possible. As a result of comparing the deviation between each window model by implementing the dynamic analysis method, the proposed window model showed that the deviation of the total heating/cooling energy consumption was reduced to 1/3 compared to Simple Window Model for one year. Although the maximum energy consumption did not show any significant improvement, the indoor temperature evaluation showed significantly reduced deviation.

Calculation of Active Power Transfer Capability using Repeated Power Flow Program

  • Ham, Jung-Pil;Kim, Jung-Hoon;Lee, Byung-Ha;Won, Jong-Ryul
    • KIEE International Transactions on Power Engineering
    • /
    • v.12A no.1
    • /
    • pp.15-19
    • /
    • 2002
  • The power transfer capability is determined by the thermal, dynamic stability and voltage limits of the generation and transmission systems. The voltage stability depends on the reactive power limit and it affects the power transfer capability to a great extent. Then, in most load flow analysis, the reactive power limit is assumed as fixed, relatively different from the actual case. This paper proposes a method for determining the power transfer capability from a static voltage stability point of view using the IPLAN which is a high level language used with PSS/E program. The f-V curve for determining the power transfer capability is determined using Repeated Power Flow method. It Is assumed that the loads are constant and the generation powers change according to the merit order. The maximum reactive power limits are considered as varying similarly with the actual case and the effects of the varied maximum reactive power limits to the maximum power transfer capability are analyzed using a 5-bus power system and a 19-bus practical power system.

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF