• Title/Summary/Keyword: Dynamic strength

Search Result 1,744, Processing Time 0.032 seconds

Comparison of Muscle Strength for One-hand and Two-hands Lifting Activity (한 손 들기 작업과 양 손 들기 작업의 근력 능력 비교 연구)

  • Kim, Hong-Ki
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.35-44
    • /
    • 2007
  • Work-related musculoskeletal disorders (WMSDs) are a major problem in industries in which manual materials handling is performed by workers. To prevent these WMSDs, it is necessary to understand the muscular strength capability and use this knowledge to design job and selection and assignment of workers. Even though two-hands lifting activity of manual materials handling tasks are prevalent at the industrial site, many manual materials handling tasks which require the worker to perform one-hand lifting are also very common at the industrial site and forestry and farming. However, a few researches have been done for one-hand lifting activity of manual materials handling tasks. The objective of this study is to compare one-hand and two-hands lifting strength in terms of static and dynamic strength of the lifting activity for the ranging from the height of knuckle to elbow. It is shown in this study that the isometric lifting strength of one-hand is ranging from 54.7 to 63.3% of the one of two-hands. However, it is found that there is no significant difference between a person's isometric lifting strength for left-hand and right-hand. It is also shown that there is no significant difference between the peak force under the dynamic sub-maximal loading with one-hand and two-hands lifting activity. Similar results were obtained for the peak acceleration and peak velocity under the dynamic sub-maximal loading with one-hand and two-hands lifting activity. Isometric lifting strength at the height of knuckle was ranging from 2 to 3 times of the dynamic peak force during sub-maximal lifting. It is concluded that the dynamic peak forces under the sub-maximal loading are not highly correlated with the isometric lifting strength in similar postures.

The Effects of Coordinative Locomotor Training using Elastic Band on Dynamic Balance and Grip Strength in Elementary School Baseball Player

  • Lee, Han-Gyeol
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.4
    • /
    • pp.414-420
    • /
    • 2021
  • Objective: The purpose of this study was to investigate the effects of coordinative locomotor training(CLT) using elastic bands on dynamic balance and grip strength for Elementary school baseball players and to provide correct posture guidance and reference on the prevention and rehabilitation program of sports damage and injury in the future. Design: Two groups pre-post randomized controlled design. Methods: Forty-six subjects were randomly divided in two groups;1) CLT using Elastic Band group(Experimental group, n=23), 2) Routine baseball training group(Control group, n=23). The intervention was conducted total 16 times for sixty minutes a day, 2 times a week, for 8 weeks. Evaluations of dynamic balance ability and grip strength were performed with all subjects before the commencement of training and 8 weeks after training. Results: Compared to the control group after training, the dynamic balance ability and dominant handgrip strength of the experimental group were significantly more improved(p<0.05). Conclusions: We confirmed that the effects of CLT using elastic bands on dynamic balance ability and grip strength in Elementary school baseball player. This study should be used for improving the quality of the Elementary school baseball player's training and would be contributed prevention and rehabilitation program of sports damage and injury.

Dynamic Property of Cross-Laminated Woods Made with Temperate Seven Species

  • GONG, Do-Min;SHIN, Moon-Gi;LEE, Soo-Hyun;BYEON, Hee-Seop;PARK, Han-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.504-513
    • /
    • 2021
  • In this study, cross-laminated wood panels were manufactured with four softwoods and three hardwoods with the goal of efficiently predicting the static strength performance using dynamic modulus of elasticity (MOE) and simultaneously revealing the dynamic performance of cross-laminated wood panels. The effect of the density of the species on the dynamic MOE of the laminated wood panels was investigated. Moreover, the static bending strength performance was predicted nondestructively through the correlation regression between the dynamic MOE and static bending strength performance. For the dynamic MOE, the parallel- and cross-laminated wood panels composed of oriental oak showed the highest value, whereas the laminated wood panels composed of Japanese cedar showed the lowest value. In all types of parallel- and cross-laminated wood panels, the density dependence was confirmed, and the extent of the density dependence was found to be greater in the P and C types with perpendicular-direction laminae in the faces than in the P and C types with longitudinal-direction laminae in the faces. Our findings confirmed that a high correlation exists at a significance level of 1% between the dynamic modulus and static bending modulus or bending strength in all types of laminated wood panels, and that the static bending strength performance can be predicted through the dynamic MOE.

Fatigue Behavior of Alumina Ceramics under the Repeated Dynamic Loading (반복 동적하중에 의한 알루미나 세라믹스의 피로거동)

  • 이규형;박성은;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.8
    • /
    • pp.850-856
    • /
    • 1998
  • The dynaamic fatigue behavior of alumina ceramics was observed at room temperature using four-point bending method. Dynamic fatigue fracture strength was observed as function of down speed and notch length. The crack growth exponent of the specimens was calculated from the fracture strength and lifetime in dynamic fatigue test. After loading the stresses in the range of 0% to 105% compared with the average in-ert strength the value of residual fracture strength was measured for unnotched and 0.5mm notched speci-mens at the 0.001 and 0.0005 mm/min down speed respectively. After the 95% stress of the average inert strength was applied repeatedly the value of rsidual fracture strength was measured for 0.5mm notched specimens at the 0.001 and 0.0005 mm/min down speed respectively. The material constant A was found to be almost the same and not to depend on the loading mode or the down speed for unnotched and notched specimen. The value of fracture strength with time calculated from the constants n and A was in good agreement with the measured value.

  • PDF

Effect of Temperature and Aging on the Relationship between Dynamic and Static Elastic Modulus of Concrete (온도와 재령이 콘크리트의 동탄성계수와 정탄성계수의 상관관계에 미치는 영향)

  • 한상훈;김진근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.445-450
    • /
    • 2001
  • The paper investigates the relationships between dynamic elastic modulus and static elastic modulus or compressive strength according to curing temperature, aging, and cement type. Based on this investigation, the new model equations are proposed. Impact echo method estimates the resonant frequency of specimens and uniaxial compression test measures the static elastic modulus and compressive strength. Type I and V cement concretes, which have the water-cement ratios of 0.40 and 0.50, are cured under the isothermal curing temperature of 10, 23, and 50 $^{\circ}C$. Cement type and aging have no large influence on the relationship between dynamic and static elastic modulus, but the ratio of dynamic and static elastic modulus comes close to 1 as temperature increases. Initial chord elastic modulus, which is calculated at lower strain level of stress-strain curve, has the similar value to dynamic elastic modulus. The relationship between dynamic elastic modulus and compressive strength has the same tendency as the relationship between dynamic and static elastic modulus. The proposed relationship equations between dynamic elastic modulus and static elastic modulus or compressive strength properly estimates the variation of relationships according to cement type, temperature, and aging.

  • PDF

Nondestructive Evaluation of Bending Strength Performances for Red Pine Containing Knots Using Flexural Vibration Techniques

  • Byeon, Hee-Seop;Ahn, Sang-Yeol;Park, Han-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.5 s.133
    • /
    • pp.13-20
    • /
    • 2005
  • This paper deals with flexural vibration techniques as a means of predicting bending strength properties for quarter-sawn and flat-sawn planes of red pine containing knots. Dynamic modulus of elasticity $(MOE_d)$ was calculated from resonance frequency obtained from the flexural vibration induced by a magnetic driver in quarter-sawn and flat-sawn planes of red pine containing knots. The dynamic MOE were well correlated to bending strength properties. Their correlation coefficients ranged from 0.866 to 0.800 for the regression between dynamic MOE and static bending MOE or MOR. The difference of the values between quarter-sawn and flat-sawn was very small. These values were higher than correlation between percentage of total knot diameter to total width of red pine specimen $(K_T(%))$ as well as $K_O(%)$ base upon ASTM D 3737 and static bending strength properties (correlation coefficient r = 0.448~0.704), and were similar to those between static bending MOE and bending MOR (r = 0.850). These results indicate that dynamic MOE obtained from resonance frequency induced by flexural vibration of magnetic driver is able to effectively use for predicting of static bending strength of red pine containing knots as well as static MOE.

The influence of dynamic force balance on the estimation of dynamic uniaxial compression strength (암석시료 내 동적하중 분배특성이 동적일축압축강도에 미치는 영향성에 관한 연구)

  • Oh, Se-Wook;Min, Gyeong-Jo;Park, Se-Woong;Park, Hoon;Suk, Chul-Gi;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.37 no.1
    • /
    • pp.14-23
    • /
    • 2019
  • It has been an always issue for the blasting or the impact analysis to consider the strength characteristics of the rock materials associate with loading rate dependency. Due to the nature of transient loading, the dynamic rock test requires a careful technique to achieve the stress equilibrium state of the specimen. In this study, to investigate the relationship between the rock dynamic strength and the stress equilibrium state, a series of dynamic uniaxial compression tests for Pocheon granite were performed. As a result, the unbalanced stress state on the specimen can lead to the premature failure on the specimen and the less estimation of dynamic strength characteristic as well as the overestimation of strain rate. Consequently, a careful consideration of rock fracture process to achieve the dynamic force balance on the specimen should be required to make an reasonable evaluation of rock dynamic strength.

Study of Crush Strength of Aluminum Honeycomb for Shock Absorber of Lunar Lander (달착륙선 충격흡수장치용 알루미늄 허니콤의 Crush Strength에 관한 연구)

  • Kim, Shin;Lee, Hyuk-Hee;Kim, Hyun-Duk;Park, Jung-Sun;Im, Jae-Hyuk;Hwang, Do-Soon
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.3
    • /
    • pp.1-5
    • /
    • 2010
  • Understanding the crushing behaviour of aluminum honeycombs under dynamic loading is useful for crash simulations of vehicles and for design of impacting energy absorbers. In the study of honeycomb crushing under quasi-static, dynamic loading, the most important parameter is crush strength. Crush strength is indicated to energy absorption characteristic of aluminum honeycomb. In this study, Using Finite Element Analysis carried out crush strength of hexagonal aluminum honeycomb then the results was compared with Quasi-static test. Consequently, Crush strength is different in quasi-static loading and dynamic loading about 16%.

  • PDF

Evaluation of Dynamic Tensile Strength of HPFRCC According to Compressive Strength Level (압축강도 수준에 따른 HPFRCC의 동적충격 인장강도 평가)

  • Park, Gi-Joon;Kim, Won-Woo;Park, Jung-Jun;Moon, Jae-Heum;Kim, Sung-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.31-37
    • /
    • 2018
  • This study evaluates the dynamic tensile behavior of HPFRCC according to compressive strength levels of 100, 140 and 180 MPa. Firstly, the compressive stress-strain relationship of 100, 140 and 180 MPa class HPFRCC was analyzed. As a result, the compressive strengths were 112, 150 and 202 MPa, respectively, and the elastic modulus increased with increasing compressive strength. The static tensile strengths of HPFRCC of 100, 140 and 180 MPa were 10.7, 11.5 and 16.5 MPa, and tensile strength also increased with increasing compressive strength. On the other hand, static tensile strength and energy absorption capacity at 100 and 140 MPa class HPFRCC showed no significant difference according to the compressive strength level. It was influenced by the specification of specimen and the arrangement of steel fiber. As a result of evaluating the dynamic impact tensile strength of HPFRCC, tensile strength and dynamic impact factor of all HPFRCCs tended to increase with increasing strain rate from 10-1/s to 150/s. In the same strain rate range, the DIF of the tensile strength was measured higher as the compressive strength of HPFRCC was lower. It is considered that HPFRCC of 100 MPa is the best in terms of efficiency. Therefore, it is advantageous to use HPFRCC with high compressive strength when a high level of tensile performance is required, and it is preferable to use HPFRCC close to the target compressive strength for more efficient approach at a high strain rate such as explosion.

The Effects of Stabilization Exercise on Muscle Performance according to Bearing Surface (지지면에 따른 안정화 운동이 근수행력에 미치는 영향)

  • Park, Jae-Cheol;Han, Jong-Man;Kim, Yong-Seong;Kim, Yong-Nam
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.10 no.1
    • /
    • pp.39-44
    • /
    • 2012
  • Purpose : This study purposed to analyze how dynamic stabilization exercise on an unstable surface, and static stabilization exercise on muscle strength and endurance. Methods : For this study we sampled 9 people for the unstable surface dynamic stabilization exercise group, 9 for the stable surface static stabilization exercise group, and 9 for the control group. In order to examine muscle strength and endurance, we measured changes in the maximal voluntary isometric contraction (MVIC) using a dynamometer before, 3 weeks after, and 6 weeks after the experiment. Results : First, with regard to change in muscle strength, flexion strength showed a significant change in interaction by time (p<0.05). Extension strength showed a significant change in interaction by time (p<0.05). Second, with regard to change in endurance, flexion endurance showed a significant change in interaction by time (p<0.05). Extension endurance showed a significant change in interaction by time (p<0.05). Conclusion : In conclusion, this study confirmed significant changes in interaction between the groups and by time with regard to changes in muscle strength and endurance. These results suggest the potential of surface dynamic stabilization exercise as a clinical intervention.