• Title/Summary/Keyword: Dynamic state

Search Result 3,208, Processing Time 0.034 seconds

Behavior of Asphalt Pavement Subjected to a Moving Vehicle I: The Effect of Vehicle Speed, Axle-weight, and Tire Inflation Pressure (이동하중에 의한 시험도로 아스팔트 포장의 거동 분석)

  • Seo, Young Gook;Lee, Kwang-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.831-838
    • /
    • 2006
  • An experimental/analytic study has been conducted to understand the adverse effects of low vehicle speed, high axle load and high tire pressure on the performance of asphalt pavements. Of 33 asphalt sections at KHC test road, two sections having different base layer thickness (180 mm versus 280 mm) are adopted for rollover tests. During the test, a standard three-axle dump truck maintains a steady state condition as moving along the wheel path of a passing lane, and lateral offsets and real travel speed are measured with a laser-based wandering system. Test results suggest that vehicle speed affects both longitudinal and transverse strains at the bottom of asphalt layer (290 mm and 390 mm below the surface), and even slightly influences the measured vertical stresses at the top of subbase and subgrade due to the dynamic effect of rolling vehicle. Since the anisotropic nature of asphalt-aggregate mixtures, the difference between longitudinal and transverse strains appears prominent throughout the measurements. As the thickness of asphalt pavement increases, the measured lateral strains become larger than its corresponding longitudinal strains. Over the limited testing conditions, it is concluded that higher axle weight and higher tire pressures induce more strains and vertical stresses, leading to a premature deterioration of pavements. Finally, a layered elastic analysis overestimates the maximum strains measured under the 1st axle load, while underestimating the maximum vertical stress in both pavement sections.

Evaluation of Vertical Vibration Performance of Tridimensional Hybrid Isolation System for Traffic Loads (교통하중에 대한 3차원 하이브리드 면진시스템의 수직 진동성능 평가)

  • Yonghun Lee;Sang-Hyun Lee;Moo-Won Hur
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.70-81
    • /
    • 2024
  • In this study, Tridimensional Hybrid Isolation System(THIS) was proposed as a vibration isolator for traffic loads, combining vertical and horizontal isolation systems. Its efficacy in improving serviceability for vertical vibration was analytically evaluated. Firstly, for the analysis, the major vibration modes of the existing apartment were identified through eigenvalue analysis for the system and pulse response analysis for the bedroom slab using commercial structural analysis software. Subsequently, a 16-story model with horizontal, vertical and rotational degrees of freedom for each slab was numerically organized to represent the achieved modes. The dynamic analysis for the measured acceleration from an adjacent ground to high-speed railway was performed by state-space equations with the stiffness and damping ratio of THIS as variables. The result indicated that as the vertical period ratio increased, the threshold period ratio where the slab response started to be suppressed varied. Specifically, when the period ratio is greater than or equal to 5, the acceleration levels of all slabs decreased to approximately 70% or less compared to the non-isolated condition. On the other hand, it was ascertained that the influence of damping ratios on the response control of THIS is inconsequential in the analysis. Finally, the improvement in vertical vibration performance of THIS was evaluated according to design guidelines for floor vibration of AIJ, SCI and AISC. It was confirmed that, after the application of THIS, the residential performance criteria were met, whereas the non-isolated structure failed to satisfy them.

Design approach of passive vibration control using damping tape for quadrotor drone in hover (제자리 비행 조건에서 쿼드로터의 감쇠 테이프를 이용한 수동적 진동 제어 설계 방법 연구)

  • Sejun Kim;Hyungmo Kim;Seongwoo Cheon;Sungjun Kim;Haeseong Cho;Lae-Hyong Kang
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.1
    • /
    • pp.37-45
    • /
    • 2024
  • This paper presents a design approach for passive vibration control to reduce vertical vibrations transmitted to the control unit during hovering flight of a quadrotor drone. Ground vibration test simulation based on finite element model was performed for forced vibration analysis of the quadrotor drone. First, modal analysis was performed to evaluate dynamic characteristics. Forced vibration response analysis was then performed to obtain the steady-state response within the operating frequency range under the hovering flight condition. Furthermore, to obtain the vibration reduction effect, a viscous damping tape was applied at positions that could induce vibrations transmitted to the control unit under the same conditions. Such a passive vibration control approach was investigated. Relevant vibration reduction effect was assessed with respect to the application of damping materials and the attachment position.

Studies on Rheological Characterization of Barley ${\beta}-Glucan$ [mixed-linked $(1-3),(1-4)-{\beta}-D-Glucan$] (보리 ${\beta}-Glucan$ [mixed-linked $(1-3),(1-4)-{\beta}-D-Glucan$의 리올로지 특성)

  • Kim, Mi-Ok;Cha, Hee-Sook;Koo, Sung-Ja
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.15-21
    • /
    • 1993
  • Crude ${\beta}-glucan$ extracted from Barley was purified by stepwise enzyme treatment (Thermostable ${\alpha}-amylase$, amyloglucosidase, protease). The Intrinsic Viscosity $[{\eta}]$ of the purified ${\beta}-glucan$ was determined by Cannon Fenske Capillary Viscometer (size 50, Cannon Instruments, State, College pa.) at different pH (2, 4, 7, 9, 11) and various salt concentration (0.01 M, 0.03 M, 0.05 M, 0.07 M, 0.1 M and 0.2 M). The $[{\eta}]$ of purified ${\beta}-glucan$ was ranged from $0.997{\sim}2.290\;dl/g$. The $[{\eta}]$ of purified ${\beta}-glucan$ at both alkali, acid condition were lower than those at pH 7. However, the alkali condition of puified ${\beta}-glucan$ solution showed less $[{\eta}]$ than the acid condition of this solution. From 0 M to 0.2 M salt concentration, the $[{\eta}]$ of purified ${\beta}-glucan$ solution was decreased to 0.03 M then increased to 0.05 M NaCl and remained constant to 0.2 M NaCl. The chain stiffness parameter of purified ${\beta}-glucan$ was not affected by temperature from $15^{\circ}C$ to $65^{\circ}C$. The shear rates of various ${\beta}-glucan$ conditions were determined by Bohlin Rheometer (Lund, Sweden). The ${\beta}-glucan$ concentration of 1.0 g/dl and 2.0 g/dl behaved as Newtonian fluid. However, above the concentration of 3.0 g/dl ${\beta}-glucan$ solution, it showed thixotropic and psedoplastic characteristics. Barley ${\beta}-glucan$ appears a damping at 0.5 frequency for the 4.0 g/dl solution. Below 0.5 frequency, it appears a viscous behavior property and above 0.5 frequency, it appears a elastic behavior property.

  • PDF

Evaluation of Internal Phosphorus Loading through the Dynamic Monitoring of Dissolved Oxygen in a Shallow Reservoir (수심이 얕은 저수지에서 용존산소 동적 모니터링을 통한 인 내부부하 평가)

  • Park, Hyungseok;Choi, Sunhwa;Chung, Sewoong;Ji, Hyunseo;Oh, Jungkuk;Jun, Hangbae
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.6
    • /
    • pp.553-562
    • /
    • 2017
  • In these days, agricultural reservoirs are considered as a useful resource for recreational purposes, tour and cultural amenity for vicinity communities as well as irrigation water supply. However, many of the agricultural reservoirs are showing a eutrophic or hyper-eutrophic state and high level of organic contamination. In particular, about 44.7% of the aged agricultural reservoirs that constructed before 1945 exceed the water quality criteria for irrigational water use. In addition to external loading, internal nutrient loading from bottom sediment may play an important role in the nutrient budget of the aged reservoirs. The objectives of this study were to characterize variations of thermal structure of a shallow M reservoir (mean depth 1.7 m) and examine the potential of internal nutrient loading by continuous monitoring of vertical water temperature and dissolved oxygen (DO) concentration profiles in 2015 and 2016. The effect of internal loading on the total loading of the reservoir was evaluated by mass balance analysis. Results showed that a weak thermal stratification and a strong DO stratification were developed in the shallow M Reservoir. And, dynamic temporal variation in DO was observed at the bottom of the reservoir. Persistent hypoxic conditions (DO concentrations less than 2 mg/L) were established for 87 days and 98 days in 2015 and 2016, respectively, during the no-rainy summer periods. The DO concentrations intermittently increased during several events of atmospheric temperature drop and rainfall. According to the mass balance analysis, the amount of internal $PO_4-P$ loading from sediment to the overlying water were 37.9% and 39.7% of total loading during no-rainy season in 2015 and 2016, respectively on August when algae growth is enhanced with increasing water temperature. Consequently, supply of DO to the lower layer of the reservoir could be effective countermeasure to reduce nutrient release under the condition of persistent DO depletion in the bottom of the reservoir.

Longitudinal Pattern of Large Wood Distribution in Mountain Streams (산지계류에 있어서 유목의 종단적 분포특성)

  • Seo, Jung Il;Chun, Kun Woo;Kim, Min Sik;Yeom, Kyu Jin;Lee, Jin Ho;Kimura, Masanobu
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.1
    • /
    • pp.52-61
    • /
    • 2011
  • Whereas recent researches have elucidated the positive ecological roles of large wood (LW) in fishbearing channels, LW is also recognized as a negative factor of log-laden debris flows and floods in densely populated areas. However in Republic of Korea, no study has investigated longitudinal variations of LW distribution and dynamic along the stream corridor. Hence to elucidate 1) physical factors controlling longitudinal distribution of LW and 2) their effect on variation in LW load amount, we surveyed the amount of LW with respect to channel morphology in a mountain stream, originated from Mt. Ki-ryong in Inje, Gangwondo. Model selection in the Generalized Linear Model procedure revealed that number of boulder (greater than or equal to 1.0 m in diameter), bankfull channel width and their interaction were the best predictors explaining LW load volume per unit channel segment area (unit LW load). In general, boulders scattered within small mountain streams influence LW retention as flow obstructions. However, in this study, we found that the effect of the boulders vary with the channel width; that is, whereas the unit LW load in the segment with narrow channel width increased continuously with increasing boulder number, it in the segment with wide channel width did not depend on the boulder number. This should be because that, in two channels having different widths, the rates of channel widths reduced by boulders are different although boulder numbers are same. Our findings on LW load varying with physical factors (i.e., interaction of boulder number and channel width) along the stream corridor suggest understanding for longitudinal continuum of hydrogeomorphic and ecologic characteristics in stream environments, and these should be carefully applied into the erosion control works for systematic watershed management and subsequent disaster prevention.

Sewer Decontamination Mechanism and Pipe Network Monitoring and Fault Diagnosis of Water Network System Based on System Analysis (시스템 해석에 기초한 하수관망 오염 매카니즘과 관망 모니터링 및 이상진단)

  • Kang, OnYu;Lee, SeungChul;Kim, MinJeong;Yu, SuMin;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.980-987
    • /
    • 2012
  • Nonpoint source pollution causes leaks and overtopping, depending on the state of the sewer network as well as aggravates the pollution load of the aqueous water system as it is introduced into the sewer by wash-off. According, the need for efficient sewer monitoring system which can manage the sewage flowrate, water quality, inflow/infiltration and overflow has increased for sewer maintenance and the prevention of environmental pollution. However, the sewer monitoring is not easy since the sewer network is built in underground with the complex nature of its structure and connections. Sewer decontamination mechanism as well as pipe network monitoring and fault diagnosis of water network system on system analysis proposed in this study. First, the pollution removal pattern and behavior of contaminants in the sewer pipe network is analyzed by using sewer process simulation program, stormwater & wastewater management model for expert (XP-SWMM). Second, the sewer network fault diagnosis was performed using the multivariate statistical monitoring to monitor water quality in the sewer and detect the sewer leakage and burst. Sewer decontamination mechanism analysis with static and dynamic state system results showed that loads of total nitrogen (TN) and total phosphorous (TP) during rainfall are greatly increased than non-rainfall, which will aggravate the pollution load of the water system. Accordingly, the sewer outflow in pipe network is analyzed due to the increased flow and inflow of pollutant concentration caused by rainfall. The proposed sewer network monitoring and fault diagnosis technique can be used effectively for the nonpoint source pollution management of the urban watershed as well as continuous monitoring system.

Dynamic Behavior of Model Set Net in the Flow (모형 정치망의 흐름에 대한 거동)

  • Jung, Gi-Cheul;Kwon, Byeong-Guk;Le, Ju-Hee
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.4
    • /
    • pp.275-284
    • /
    • 1997
  • This experiment was carried out to measure the sinking depth of each buoy, the change in the net shape of the net, and the tension of sand bag line according to the R (from bag net to the fish court) and L (from fish court to the bag net) current directions and their velocity by the model experiment. The model net was one-fiftieth of the real net, and its size was determined after considering the Tauti’s Similarity Law and the dimension of the experimental tank. 1. The changes of the net shape were as follows : In the current R, the end net of fish court moved 20mm down the lowerward tide and 10mm upper part. So the whole model net moved up at 0.2m/sec. The shape of the net showed an almost linear state from bag net to the fish court at 0.6m/sec. In the current L, the door net moved 242mm down the lowerward tide and 18mm upper part. So the whole model net moved up at 0.2m/sec. The net shape showed an almost linear state from the fish court to the bag net at 0.5m/sec. 2. The sinking depths of each buoy were as follows: In the current R, the head buoy started sinking at 0.2m/sec and sank 20mm, 99mm at 0.3m/sec and 0.6m/sec, respectively. The end buoy didn't sink from 0m/sec to 0.6m/sec but showed a slight quake. In the current L, the end buoy started sinking at 0.1m/sec, and sank 5mm and 108mm at 0.2m/sec and 0.6m/sec, respectively. The whole model net sank at 0.5m/sec except the head buoy. 3. The changes of the sand bag line tension were as follows: In the current R, the tension affected by the sand bag line of the head buoy showed 273.51g at 0.1m/sec increased to 1298.40g at 0.6m/sec. In the current L, the tension affected by the sand bag line of the end buoy on one side showed 137.08g at 0.1m/sec increased to 646.00g at 0.6m/sec. The changes in the sand bag line tension were concentrated on the sand bag line of the upperward tide with increasing velocity at the R and L current directions. However, no significant increase in tension was observed in the other sand bag lines.

  • PDF

Studies on Creep Behavior for Rice Stalks (벼줄기의 크리이프 거동(擧動)에 관한 연구)

  • Huh, Yun Kun;Kim, Sung Rai;Lee, Sang Woo
    • Korean Journal of Agricultural Science
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 1995
  • All agricultural crops and products should be cultured, harvested, handled and processed by the proper mechanical methods in the mechanized farming systems. Agricultural crops might be injured or deformed through various working stages due to static or dynamic forces of machines. Mechanical forces had to be applied with proper degrees to the agricultural crops in incoincidence with properties of crops without any damage of crops so as to increase the work efficiency qualitatively. Knowledges of mechanical properties of agricultural materials are essential to prevent of agricultural crops in relation with mechanical farming system. This study was carried out to examine and analyze the creep behavior of the rice stalk on growing and harvesting periods by mechanical model with computer measurement system in radial directional compressive force and bending force. The creep behavior of the rice stalk could be predicted precisely and its results approached closely to the measured values. The creep behaviors were increased greatly with increase of compressive force, namely, the steady state creep behavior occurred at the force less then 25N and the logarithmic creep behavior at the force bigger than 30N. The instantaneous elastic modulus $E_o$ and the retardation time ${\tau}_K$ were increased together with increase of applied forces, meanwhile the retarded elastic modulus $E_r$ and viscosity ${\eta}_v$ were decreased with increase of applied forces in mechanical model being expected the creep behavior in relation with the level of applied forces, which was well explained that the rice stalk might be visvo-elastic material. In the creep test along the stalk portion with compressive force and bending force, the intermediate portion showed greatest values and also the lower portion showed the least values, which implied that the intermediate portions of rice stalk were very weak. The steady state creep behavior occured at the intermediate portion and the upper portion in the rice stalk at the compressive force larger than 25.0N, which showed the possibility of injury due to external forces.

  • PDF

Deep Learning Architectures and Applications (딥러닝의 모형과 응용사례)

  • Ahn, SungMahn
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.127-142
    • /
    • 2016
  • Deep learning model is a kind of neural networks that allows multiple hidden layers. There are various deep learning architectures such as convolutional neural networks, deep belief networks and recurrent neural networks. Those have been applied to fields like computer vision, automatic speech recognition, natural language processing, audio recognition and bioinformatics where they have been shown to produce state-of-the-art results on various tasks. Among those architectures, convolutional neural networks and recurrent neural networks are classified as the supervised learning model. And in recent years, those supervised learning models have gained more popularity than unsupervised learning models such as deep belief networks, because supervised learning models have shown fashionable applications in such fields mentioned above. Deep learning models can be trained with backpropagation algorithm. Backpropagation is an abbreviation for "backward propagation of errors" and a common method of training artificial neural networks used in conjunction with an optimization method such as gradient descent. The method calculates the gradient of an error function with respect to all the weights in the network. The gradient is fed to the optimization method which in turn uses it to update the weights, in an attempt to minimize the error function. Convolutional neural networks use a special architecture which is particularly well-adapted to classify images. Using this architecture makes convolutional networks fast to train. This, in turn, helps us train deep, muti-layer networks, which are very good at classifying images. These days, deep convolutional networks are used in most neural networks for image recognition. Convolutional neural networks use three basic ideas: local receptive fields, shared weights, and pooling. By local receptive fields, we mean that each neuron in the first(or any) hidden layer will be connected to a small region of the input(or previous layer's) neurons. Shared weights mean that we're going to use the same weights and bias for each of the local receptive field. This means that all the neurons in the hidden layer detect exactly the same feature, just at different locations in the input image. In addition to the convolutional layers just described, convolutional neural networks also contain pooling layers. Pooling layers are usually used immediately after convolutional layers. What the pooling layers do is to simplify the information in the output from the convolutional layer. Recent convolutional network architectures have 10 to 20 hidden layers and billions of connections between units. Training deep learning networks has taken weeks several years ago, but thanks to progress in GPU and algorithm enhancement, training time has reduced to several hours. Neural networks with time-varying behavior are known as recurrent neural networks or RNNs. A recurrent neural network is a class of artificial neural network where connections between units form a directed cycle. This creates an internal state of the network which allows it to exhibit dynamic temporal behavior. Unlike feedforward neural networks, RNNs can use their internal memory to process arbitrary sequences of inputs. Early RNN models turned out to be very difficult to train, harder even than deep feedforward networks. The reason is the unstable gradient problem such as vanishing gradient and exploding gradient. The gradient can get smaller and smaller as it is propagated back through layers. This makes learning in early layers extremely slow. The problem actually gets worse in RNNs, since gradients aren't just propagated backward through layers, they're propagated backward through time. If the network runs for a long time, that can make the gradient extremely unstable and hard to learn from. It has been possible to incorporate an idea known as long short-term memory units (LSTMs) into RNNs. LSTMs make it much easier to get good results when training RNNs, and many recent papers make use of LSTMs or related ideas.