• Title/Summary/Keyword: Dynamic state

Search Result 3,205, Processing Time 0.03 seconds

A Study of Multiple Dynamic Programming (Multiple dynamic programming에 관한 연구)

  • Young Moon park
    • 전기의세계
    • /
    • v.21 no.1
    • /
    • pp.13-16
    • /
    • 1972
  • Dynamic Programming is regarded as a very powerful tool for solving nonlinear optimization problem subject to a number of constraints of state and control variables, but has definite disadvantages that it requires much more computing time and consumes much more memory spaces than other technigues. In order to eliminate the above-mentioned demerits, this paper suggests a news technique called Multiple Dynamic Programming. The underlying principles are based on the concept of multiple passes that, instead of forming fin lattices in time-state plane as adopted in the conventional Dynamic Programming, the Multiple Dynamic Programming constitutes, at the first pass, coarse lattices in the feasible domain of time-state plane and determines the optimal state trajectory by the usual method of Dynamic Programming, and at the second pass again constitutes finer lattices in the narrower domain surrounded by both the upperand lower edges next to the lattice edges through which the first pass optimal trajectory passes and determines the more accurate optimal trajectory of state, and then at the third pass repeats the same processes, and so on. The suggested technique insures remarkable curtailment in amounts of computer memory spaces and conputing time, and its applicability has been demonstrated by a case study on the hydro-thermal power coordination in Korean power system.

  • PDF

Control Method for State Constrained Control Systems: Dynamic Anti-Widup Based Approach (동적 와인드엎 방지법에 기초한 상태 제한이 존재하는 시스템의 제어 방법)

  • Park, Jong-Koo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.8
    • /
    • pp.672-681
    • /
    • 2000
  • Based on the dynamic anti-windup strategy a novel control methodology for state constrained control systems is presented. First a linear controller is designed for an open-loop stable plant to show a desirable nominal performance by ignoring state constraints. And then an additional dynamic compensator is introduced to preserve the nominal performance as closely as possible int he face of state constraints. This paper focuses on the second step under the assumption that a linear controller has already been designed appropriately by using an effective controller design method. By minimizing a reasonable performance index the dynamic compensator is derived explicitly which is expressed int he plant and controller parameters. the proposed method not only guarantees the total stability of the overall resulting systems but also provides desirable output performance because it solves the state-positioning problem completely.

  • PDF

A Study on the Dynamic Stress Intensity Factor of Orthotropic Materials(I) (직교 이방성체의 동적 응력확대계수에 관한 연구(I))

  • 이광호;황재석;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.313-330
    • /
    • 1993
  • The propagating crack problems under dynamic plane mode in orthotropic material is studied in this paper. To analyze the dynamic fracture problems in orthortropic material, it is important to know the dynamic stress components and dynamic displacement components around the crack tip. Therefore the dynamic stress components of dynamic stress field and dynamic displacement components of dynamic displacement field in the crack tip of orthotropic material under the dynamic load and the steady state in crack propagation were derived. When the crack propagation speed approachs to zero, the dynamic stress component and dynamic displacement components derived in this study are identical to the those of static state. In addition, the relationships between dynamic stress intensity factor and dynamic energy release rate are determinded by using the concept of crack closure closure energy with the dynamic stresses and represented according to physical properties of the orthotrophic material and crack speeds. The faster the crack velocity, the greater the stress value of stress components in crack tip. The stress value of the stress component of crack tip is greater when fiber direction coincides with the crack propagation than when fider direction is normal to the crack propagation.

A Transient Dynamic Response Analysis in the State-Space Applying the Average Velocity (평균속도 개념을 적용한 상태공간에서의 과도동적응답 해석)

  • 이안성;김병옥;김영철;김영춘
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.465-470
    • /
    • 2003
  • In this study, the state-space Newmark method based on average velocity is presented to analyse the transient dynamic response for general dynamic system. The conventional Newmark method based on average acceleration cannot he directly to the first-order state-space differential equations introducing the state-space vector. To overcome this problem, the time-step integration algorithm, based on average velocity concept, suitable for the first-order state-space differential equations is proposed In results, the proposed method has %he numerical stability and order of accuracy, which is proved analytically, equal to those of the conventional Newmark method based on average acceleration. Also, the formulation for numerical solution is very simple and the calculation time Is nearly equal to that of the conventional Newmark method based on average acceleration in spite of an increase of two times over matrix size. This method will be look forward to applying the general dynamic system to calculate the transient dynamic response.

  • PDF

Analyzing the Influence of Spatial Sampling Rate on Three-dimensional Temperature-field Reconstruction

  • Shenxiang Feng;Xiaojian Hao;Tong Wei;Xiaodong Huang;Pan Pei;Chenyang Xu
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.246-258
    • /
    • 2024
  • In aerospace and energy engineering, the reconstruction of three-dimensional (3D) temperature distributions is crucial. Traditional methods like algebraic iterative reconstruction and filtered back-projection depend on voxel division for resolution. Our algorithm, blending deep learning with computer graphics rendering, converts 2D projections into light rays for uniform sampling, using a fully connected neural network to depict the 3D temperature field. Although effective in capturing internal details, it demands multiple cameras for varied angle projections, increasing cost and computational needs. We assess the impact of camera number on reconstruction accuracy and efficiency, conducting butane-flame simulations with different camera setups (6 to 18 cameras). The results show improved accuracy with more cameras, with 12 cameras achieving optimal computational efficiency (1.263) and low error rates. Verification experiments with 9, 12, and 15 cameras, using thermocouples, confirm that the 12-camera setup as the best, balancing efficiency and accuracy. This offers a feasible, cost-effective solution for real-world applications like engine testing and environmental monitoring, improving accuracy and resource management in temperature measurement.

Dynamic sensitivity analysis and optimum design of aerospace structures

  • Gu, Yuanxian;Kang, Zhan;Guan, Zhenqun;Jia, Zhiwen
    • Structural Engineering and Mechanics
    • /
    • v.6 no.1
    • /
    • pp.31-40
    • /
    • 1998
  • The research and applications of numerical methods of design optimization on structural dynamic behaviors are presented in this paper. The emphasis is focused on the dynamic design optimization of aerospace structures, particularly those composed of composite laminate and sandwich plates. The methods of design modeling, sensitivity analysis on structural dynamic responses, and the optimization solution approaches are presented. The numerical examples of sensitivity analysis and dynamic structural design optimization are given to demonstrate the effectiveness of the numerical methods.

The Process Simulation of Entrained Flow Coal Gasification in Dynamic State for 300MW IGCC (300MW급 IGCC를 위한 건식 분류층 석탄 가스화 공정의 동적 상태 모사)

  • Kim, Mi-Yeong;Joo, Yong-Jin;Choi, In-Kyu;Lee, Joong-Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.460-469
    • /
    • 2010
  • To develop coal gasfication system, many studies have been actively conducted to describe the simulation of steady state. Now, it is necessary to study the gasification system not only in steady state but also in dynamic state to elucidate abnormal condition such as start-up, shut-down, disturbance, and develop control logic. In this study, a model was proposed with process simulation in dynamic state being conducted using a chemical process simulation tool, where a heat and mass transfer model in the gasifier is incorporated, The proposed model was verified by comparison of the results of the simulation with those available from NETL (National Energy Technology Laboratory) report under steady state condition. The simulation results were that the coal gas efficiency was 80.7%, gas thermal efficiency was 95.4%, which indicated the error was under 1 %. Also, the compositions of syngas were similar to those of the NETL report. Controlled variables of the proposed model was verified by increasing oxygen flow rate to gasifier in order to validate the dynamic state of the system. As a result, trends of major process variables were resonable when oxygen flow rate increased by 5% from the steady state value. Coal flow rate to gasifier and quench gas flow rate were increased, and flow rate of liquid slag was also increased. The proposed model in this study is able to be used for the prediction of gasification of various coals and dynamic analysis of coal gasification.

Analysis of delay compensation in real-time dynamic hybrid testing with large integration time-step

  • Zhu, Fei;Wang, Jin-Ting;Jin, Feng;Gui, Yao;Zhou, Meng-Xia
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1269-1289
    • /
    • 2014
  • With the sub-stepping technique, the numerical analysis in real-time dynamic hybrid testing is split into the response analysis and signal generation tasks. Two target computers that operate in real-time may be assigned to implement these two tasks, respectively, for fully extending the simulation scale of the numerical substructure. In this case, the integration time-step of solving the dynamic response of the numerical substructure can be dozens of times bigger than the sampling time-step of the controller. The time delay between the real and desired feedback forces becomes more striking, which challenges the well-developed delay compensation methods in real-time dynamic hybrid testing. This paper focuses on displacement prediction and force correction for delay compensation in the real-time dynamic hybrid testing with a large integration time-step. A new displacement prediction scheme is proposed based on recently-developed explicit integration algorithms and compared with several commonly-used prediction procedures. The evaluation of its prediction accuracy is carried out theoretically, numerically and experimentally. Results indicate that the accuracy and effectiveness of the proposed prediction method are of significance.

Dynamic Compensation Method for State Delayed Control Systems with Input Saturation (입력제한이 존재하는 상태지연 시스템의 동적보상방법)

  • Park, Jong-Koo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.7
    • /
    • pp.325-331
    • /
    • 2001
  • A dynamic anti-windup method for state delayed control systems with input saturation is considered. Under the assumption that a linear controller has been designed for a state delayed control system based on the existing design technique which shows desirable nominal performance, an additional compensator is incorporated to provide a graceful performance degradation despite of input saturation. By regarding the difference of the controller states in the absence and presence of input saturation as an objective function, the dynamic compensator which minimizes it is determined explicitly. The proposed dynamic compensator is the closed form of plant and controller parameters. The proposed method not only provides graceful performance degradation, but it also guarantees the total stability of resulting systems. An illustrative example is provided to show the effectiveness of the proposed method.

  • PDF

A Dynamic Modeling & State Sensitivity Analysis of the Surface Mounting Device (Surface Mounting Device의 동역학적 모델링 및 상태 민감도 해석)

  • Jang, Jinhee;Han, Changsoo;Kim, Jungduck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.7
    • /
    • pp.90-99
    • /
    • 1996
  • In the area of assembly process of micro-chips and electronic parts on the printed circuit board, surface mounting device(SMD) is used as a fundamental tool. Generally speaking, the motion of the SMD is based on the ball screw system operated by any type of actuators. The ball screw system is a mechanical transformed which converts the mechanical rotational motion to the translational one. Also, this system could be considered as an efficient motion device against mechanical backlash and friction. Therefore a dynamic modeling and state sensitivity analysis of the ball screw system in SMD have to be done in the initial design stage. In this paper, a simple mathematical dynamic model for this system and the sensit- ivity analysis are mentioned. Especially, the bond graph approach is used for graphical modeling of the dynamic system before analysis stage. And the direct differentiation method is used for the state sensit- ivity analysis of the system. Finally, some trends for the state variables with respect to the design variables could be suggested for the better design and faster operating based on the results of dynamic and state sensitivity.

  • PDF