• Title/Summary/Keyword: Dynamic stabilization

Search Result 308, Processing Time 0.024 seconds

A Dynamic Causality Analysis of Oliver Flounder Producer Price by Region using the Panel VAR Model (패널 VAR 모형을 이용한 지역별 양식넙치 산지가격의 동태적 인과관계 분석)

  • Jeon, Yong-Han;Nam, Jong-Oh
    • The Journal of Fisheries Business Administration
    • /
    • v.52 no.1
    • /
    • pp.47-63
    • /
    • 2021
  • The purpose of this study is to identify the leading price between Jeju and Wando's oliver flounder producer price and to analyze the dynamic effect of the regional producer price using the panel VAR model. In the process of analysis, it was confirmed that there are unit roots in the monthly data of Jeju and Wando's oliver flounder producer price. So, in order to avoid spurious regression, the rate change of producer price which carries out log difference was used in the analysis. As a result of the analysis, first, the panel Granger causality test showed that the influence of the change rate of producer price in oliver flounder in Jeju was slightly larger than that in Wando, but it was found that each region all leads the change rate of the producer price in oliver flounder. Second, the panel VAR estimation showed that the rate change of producer price in Jeju and Wando a month ago had a statistically significant effect on the change rate of producer price of each region. Third, the impulse response analysis indicated that other regions are affected a little more than the same region in case of the occurrence of the impact on the error terms of the change rate of produce price in Jeju and Wando oliver flounder. Fourth, the variance decomposition analysis showed that the change rate of producer price in the two regions was higher explained by Jeju compared to Wando. In conclusion, it is expected that the above results can not only be useful as basic data for the stabilization of oliver flounder producer price and the establishment of policies for easing volatility but can also help the oliver flounder industry operate its business.

Dynamic Characteristic Analysis and LMI-based H_ Controller Design for a Line of Sight Stabilization System

  • Lee, Won-Gu;Kim, In-Soo;Keh, Joong-Eup;Lee, Man-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1187-1200
    • /
    • 2002
  • This paper is concerned with the design or an LMI (Linear Matrix Inequality) -based H$\infty$ controller for a line of sight (LOS) stabilization system and with its robustness performance. The linearization of the system is necessary to analyze various nonlinear characteristics, but the linearization entails modeling uncertainties which reduce its performance. In addition, the stability of the LOS can be adversely affected by angular velocity disturbances while the vehicle is moving. As the vehicle accelerates, all the factors that are Ignored and simplified for the linearization tend to Inhibit the performance of the system. The robustness in the face of these uncertainties needs to be assured. This paper employs H$\infty$ control theory to address these problems and the LMI method to provide a suitable controller with minimal constraints for the system. Even though the system matrix does not have a full rank, the proposed method makes it possible to design a H$\infty$ controller and to deal with R and S matrices for reducing the system order. It can be also shown that the proposed robust controller has a better disturbance attenuation and tracking performance. The LMI method is also used to enhance the applicability of the proposed reduced-order H$\infty$ controller for the system given. The LMI-based H$\infty$ controller has superior disturbance attenuation and reference input tracking performance, compared with that of the conventional controller under real disturbances.

Linear Quadratic Controller Design of Insect-Mimicking Flapping Micro Aerial Vehicle (곤충모방 날갯짓 비행체의 LQ 제어기 설계)

  • Kim, Sungkeun;Kim, Inrae;Kim, Seungkeun;Suk, Jinyoung
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.5
    • /
    • pp.450-458
    • /
    • 2017
  • This paper presents dynamic modelling and simulation study on attitude/altitude control of an insect-mimicking flapping micro aerial vehicle during hovering. Mathematical modelling consists of three parts: simplified flapping kinematics, flapping-wing aerodynamics, and six degree of freedom dynamics. Attitude stabilization is accomplished through linear quadratic regulator based on the linearized model of the time-varying nonlinear system, and altitude control is designed in the outer loop using PID control. The performance of the proposed controller is verified through numerical simulation where attitude stabilization and altitude control is done for hovering. In addition, it is confirmed that the attitude channel by periodic control is marginally stable against periodic pitching moment caused by flapping.

Real-time impact location monitoring using the stabilized Bragg grating sensor system (안정화된 광섬유 브래그 격자 센서 시스템을 이용한 실시간 충격위치검출에 관한 연구)

  • Bang, Hyung-Joon;Hong, Chang-Sun;Kim, Chun-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.37-42
    • /
    • 2004
  • In order to monitor the impact locations in smart structures, multipoint ultrasonic sensors are to be employed. In this study, a multiplexing demodulator with wide dynamic range was proposed to detect the impact locations using FBG sensors, and a stabilization controlling system was also developed for the maintenance of maximum sensitivity of sensors. Two FBG sensors were attached on the bottom side of the aluminum beam specimen and low velocity impact tests were performed to detect the one-dimensional impact locations. As a result, multiplexed in-line FBG sensors could detect the moment of impact precisely, and found the impact locations with the average location error below 0.58mm.

Stability Rating Tests for Optimization of Axial Baffle Length (배플 길이의 최적화를 위한 연소 안정성 평가 시험)

  • Kim, Hong-Jip;Lee, Kwang-Jin;Seo, Seong-Hyeon;Kim, Seung-Han;Han, Yeoung-Min;Seol, Woo-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.69-77
    • /
    • 2005
  • To optimize and limit the axial length of the baffle of the KSR-III engine, stability rating tests using pulse gun as one of artificial disturbance devices have been done. Generally a rocket engine can be considered to be dynamically stable if a certain imposed external perturbation or pressure oscillation in rocket combustion chamber could be suppressed within a short time period. Decay time and other parameters for the evaluation of stabilization ability of an engine to external perturbation have been analyzed to quantify stabilization capacity of engine, in other words, dynamic stability margin. Baffle not covering flame zone enough which can be considered as collision region of injector wasn't be able to suppress external perturbation sufficiently. The limit of combustion stability margin of engine is assumed to be 50 mm length baffle of the KSR-III engine.

Stabilized Bragg grating sensor system for multiplexing vibration sensors of smart structures (스마트 구조물의 동시다점 진동 취득용 안정화된 광섬유 브래그 격자 센서 시스템의 개발)

  • Bang, Hyung-Joon;Kim, Dae-Hyun;Hong, Chang-Sun;Kim, Chun-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.5
    • /
    • pp.50-57
    • /
    • 2004
  • For the application of structural health monitoring such as AE detection, a stabilized FBG sensor system with wide dynamic range was proposed. A tunable Fabry-Perot filter with narrow free spectral range(FSR) was used to simplify the multiplexing demodulator for FBG vibration sensors. Stabilization controlling system was also developed for the maintenance of maximum sensitivity of the sensors. In order to verify the performance of the proposed FBG vibration sensor system, we measured sensitivity, and the system showed the average sensitivity of 256 $n{\in}_{mas}/{\sqrt{Hz}}$. Finally, multi-points vibration tests using in-line FBG sensors were conducted to validate the multiplexing performance of the FBG system.

Cloth Modeling using Implicit Constraint Enforcement (묵시적 제한방법을 이용한 옷 모델링 방법)

  • Hong, Min;Lee, Seung-Hyun;Park, Doo-Soon
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.4
    • /
    • pp.516-524
    • /
    • 2008
  • This paper presents a new modeling technique for the simulation of cloth specific characteristics with a set of hard constraints using an implicit constraint enforcement scheme. A conventional explicit Baumgarte constraint stabilization method has several defects. It requires users to pick problem-dependent coefficients to achieve fast convergence and has inherent stabilization limits. The proposed implicit constraint enforcement method is stable with large time steps, does not require problem dependent feed-back parameters, and guarantees the natural physics-based motion of an object. In addition, its computational complexity is the same as the explicit Baumgarte method. This paper describes a formulation of implicit constraint enforcement and provides a constraint error analysis. The modeling technique for complex components of cloth such as seams, buttons, sharp creases, wrinkles, and prevention of excessive elongation are explained. Combined with an adaptive constraint activation scheme, the results using the proposed method show the substantial enhancement of the realism of cloth simulations with a corresponding savings in computational cost.

  • PDF

Comparison of the Effects of Pilates and Aerobic Exercise on Pain, Menstruation Symptoms, and Balance in Women with Dysmenorrhea

  • Lee, Su-Wan;Shin, Won-Seob
    • The Journal of Korean Physical Therapy
    • /
    • v.33 no.5
    • /
    • pp.238-244
    • /
    • 2021
  • Purpose: Menstruation is associated with menstrual symptoms like pain and balance problems which have an impact on the quality of life. Pilates increases pelvic stability and reduces menstrual pain by inducing abdominal muscle contraction. This study was done to evaluate the effects of Pilates on menstrual pain, symptoms, balance, and quality of life when compared to aerobic exercise. Methods: Thirty-nine women with menstrual pain were randomly divided into the Pilates group (n=13), aerobics group (n=13), and control group (n=13). The Pilates group performed lumbar-pelvic stabilization exercises, while the aerobic group ran on a treadmill. The control group did not undergo any intervention. The experimental groups exercised for four weeks (12 sessions) and did not exercise during menstruation. The Y-balance test was performed on the second day of menstruation to evaluate dynamic balance. The questionnaires administered immediately after menstruation were the visual analog scale (VAS), Korea Oswestry Disability Index (ODI), and the modified Menstrual Distress Questionnaire (MDQ). The paired t-test was used to compare the effect of exercise within the three groups and a oneway analysis of variance was used to compare between groups. Results: VAS and MEDI-Q scores significantly decreased in the Pilates group after 4 weeks compared with those in the aerobic and control groups. Moreover, ODI and Y-balance scores increased in the Pilates group compared with those in the aerobic and control groups (p<0.05). Conclusion: The Pilates stabilization exercises are effective and help in improving menstrual pain, balance and other menstrual symptoms assessed through ODI, and MEDI-Q, compared to aerobic exercises.

Modeling & Simulation Framework for the Efficient Development of a Rescue Robot (효율적인 구조로봇 개발을 위한 통합 M&S 프레임워크)

  • Park, Gyuhyun
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.149-158
    • /
    • 2019
  • This paper introduces an integrated Modeling & Simulation framework for the efficient development of the rescue robot which rescues a wounded patients or soldiers and disposes a dangerous objects or explosive materials in the battlefields and disastrous environments. An integrated M&S(Modeling & Simulation) framework would have enabled us to perform the dynamic simulation program GAZEBO based Software-in-the-Loop Simulation(SILS) which is to replacing the robot platform hardware with a simulation software. An integrated M&S framework would help us to perform designing robot and performance validation of robot control results more efficiently. Furthermore, Tele-operation performance in the unstructured environments could be improved. We review a case study of applying an integrated M&S framework tool in validating performance of mobility stabilization control, one of the most important control strategy in the rescue robot.

A cost-effective method to prepare size-controlled nanoscale zero-valent iron for nitrate reduction

  • Ruiz-Torres, Claudio Adrian;Araujo-Martinez, Rene Fernando;Martinez-Castanon, Gabriel Alejandro;Morales-Sanchez, J. Elpidio;Lee, Tae-Jin;Shin, Hyun-Sang;Hwang, Yuhoon;Hurtado-Macias, Abel;Ruiz, Facundo
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.463-473
    • /
    • 2019
  • Nanoscale zero-valent iron (nZVI) has proved to be an effective tool in applied environmental nanotechnology, where the decreased particle diameter provides a drastic change in the properties and efficiency of nanomaterials used in water purification. However, the agglomeration and colloidal instability represent a problematic and a remarkable reduction in nZVI reactivity. In view of that, this study reports a simple and cost-effective new strategy for ultra-small (< 7.5%) distributed functionalized nZVI-EG (1-9 nm), with high colloidal stability and reduction capacity. These were obtained without inert conditions, using a simple, economical synthesis methodology employing two stabilization mechanisms based on the use of non-aqueous solvent (methanol) and ethylene glycol (EG) as a stabilizer. The information from UV-Vis absorption spectroscopy and Fourier transform infrared spectroscopy suggests iron ion coordination by interaction with methanol molecules. Subsequently, after nZVI formation, particle-surface modification occurs by the addition of the EG. Size distribution analysis shows an average diameter of 4.23 nm and the predominance (> 90%) of particles with sizes < 6.10 nm. Evaluation of the stability of functionalized nZVI by sedimentation test and a dynamic light-scattering technique, demonstrated very high colloidal stability. The ultra-small particles displayed a rapid and high nitrate removal capacity from water.