• Title/Summary/Keyword: Dynamic simulation model

Search Result 2,995, Processing Time 0.034 seconds

Dynamic Model Identification of Quadrotor UAV based on Frequency-Domain Approach (주파수 영역 기반 쿼드로터 무인기 운동 모델 식별)

  • Jung, Sunggoo;Kim, Sung-Yug;Jung, Yeundeuk;Kim, Eung-Tai
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.4
    • /
    • pp.22-29
    • /
    • 2015
  • Quadrotor is widely used in variable application nowadays. Due to its inherent unstable characteristics, control system to augment the stability is essential for quadrotor operation. To design control system and verify its performance through simulation, accurate dynamic model is required. Quadrotor dynamic model is simply compared with conventional rotorcraft such as helicopter. However, the accurate dynamic model of quadrotor is not easy to develop because of the highly correlated aerodynamic effect of each rotor. In this paper, quadrotor dynamic model is identified from the flight data using frequency domain approach. Flight test of quadrotor is performed in closed loop configuration with stability augmentation system included. Frequency sweep input is applied in each of lateral, longitudinal, yaw and heave axis separately. The bare dynamic model is identified from the flight data of quadrotor responses and thrust measurement through Pulse Width Modulation(PWM) data. The frequency responses of identified model match well with those of flight data, and time responses of identified model for doublet input in each axis are also shown to agree with flight data.

The study on the dynamic analysis of a step motor (스텝 모으터의 동특성해석에 관한 연구)

  • 천희영;박귀태
    • 전기의세계
    • /
    • v.29 no.1
    • /
    • pp.58-64
    • /
    • 1980
  • In this paper, this objective is to obtain the mathematical model which describes the dynamic characteristics of variable reluctance(VR) step motor, the most important and most widely used motor in practice. In the development of the mathematical model for VR step motor, first the general nonlinear dynamic equations which describe the N-phase VR step motor are derived. These general equations are then applied to the multiple-step type of VR step motor in case, for simplicity, maynetic saturation and core lossess in the iron are neglected. These nonlinear dynamic equations are numerically analysed by the computer simulation, through which the performance characteristics of a step motor undertest are investigated under the various operating conditions.

  • PDF

Large Eddy Simulation of Turbulent Passive Scalar in a Channel with Strong Wall Injection (대와류모사 기법을 이용한 강한 벽분사가 있는 채널 내에서의 난류 유동장 및 온도장 해석)

  • Kim, Hak-Jong;Na, Yang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.628-637
    • /
    • 2004
  • The present study investigates the performance of dynamic mixed model (DMM; Zang et ai.) in a channel with strong wall injection through a Large eddy simulation (LES) technique. The DMM results are compared with those of DNS and the results obtained with popular dynamic Smagorinsky model (DSM). Better agreement is achieved when using the DMM with box filter than DSM and coarse DNS in predicting the first and second order statistics as well as large-scale structures of velocity and temperature fields. Such favorable features of DMM are attributed to the fact that it explicitly calculates the modified Leonard stress term and only models the remaining cross and the SGS Reynolds stress terms and, thus, it reduces the excessive burden put on the model coefficient of DSM. Also it is demonstrated that the DMM can be successfully extended to the prediction of temperature (passive scalar) field where strong streamwise inhomogeneity exists.

Automotive Windshield Wiper Linkage Dynamic Modeling for Vibration Analysis (자동차 와이퍼 링키지의 진동해석을 위한 동역학 모델링)

  • Lee, Byoung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.465-472
    • /
    • 2008
  • An automotive windshield wiper system is modeled mainly for vibration analysis purpose. The model is composed of solid links, ideal joints, imperfect joints to simulate unavoidable manufacturing defects and bushings having stiffness, contact between a wiper blade and a wind screen glass, friction, a spring and an actuator. Main stream of wiper dynamics analysis has been obtaining a closed form of system of equations using Newton's or Lagrange's formula and doing a numerical simulation study to understand and predict the behavior of it. However, the modeling process is complex since a wiper system is of multibody and a contact problem occurs. When imperfection, such as dead zone of a joint and stiffness of a rubber bushing, should be included, the added complexity makes the modeling difficult. Since the imperfection is understood as main cause of problematic vibration, the dynamics model of a wiper system aiming vibration analysis should include such unavoidable manufacturing defects in the model. An open form of dynamic model of a automotive windshield wiper system with imperfect joints using a commercial software is obtained and a simulation analyssis is conducted for vibration reduction study.

Fault diagnosis for chemical processes using weighted symptom model and pattern matching (가중증상모델과 패턴매칭을 이용한 화학공정의 이상진단)

  • Oh, Young-Seok;Mo, Kyung-Ju;Yoon, Jong-Han;Yoon, En-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.520-525
    • /
    • 1997
  • This paper presents a fault detection and diagnosis methodology based on weighted symptom model and pattern matching between the coming fault propagation trend and the simulated one. In the first step, backward chaining is used to find the possible cause candidates for the faults. The weighted symptom model is used to generate those candidates. The weight is determined from dynamic simulation. Using WSM, the methodology can generate the cause candidates and rank them according to the probability. Second, the fault propagation trends identified from the partial or complete sequence of measurements are compared with the standard fault propagation trends stored a priori. A pattern matching algorithm based on a number of triangular episodes is used to effectively match those trends. The standard trends have been generated using dynamic simulation and stored a priori. The proposed methodology has been illustrated using two case studies, and the results showed satisfactory diagnostic resolution.

  • PDF

A Basic Study of Dynamic Simulation Model for In-situ Production and Erection of Precast Concrete Members (PC의 현장생산-설치 통합관리를 위한 동적 시뮬레이션 모델 기초연구)

  • Son, Seung-Hyun;Kim, Ki-Ho;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.42-43
    • /
    • 2019
  • In-situ production of PC (precast concrete) members can reduce costs by about 14.5% -21.6% compared to in-plant production due to the reduction of transportation costs, factory profits and overhead costs. However, in-situ production of PC members presents a variety of risks, including member production and yard area securing, and lead time for production within the installation period. To solve this, it is necessary be able to analyze and control and monitor the risk factors that influence in-situ production for PC member. The purpose of this study is to develop a dynamic simulation model for in-situ production and erection integrated management for PC members. For this study, risk factor identification, causal loop diagram, and dynamic simulation model construction were performed sequentially. The results of this study will be used as a basis for developing a risk management model for PC in-situ production.

  • PDF

Vector form intrinsic finite-element analysis of static and dynamic behavior of deep-sea flexible pipe

  • Wu, Han;Zeng, Xiaohui;Xiao, Jianyu;Yu, Yang;Dai, Xin;Yu, Jianxing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.376-386
    • /
    • 2020
  • The aim of this study was to develop a new efficient strategy that uses the Vector form Intrinsic Finite-element (VFIFE) method to conduct the static and dynamic analyses of marine pipes. Nonlinear problems, such as large displacement, small strain, and contact and collision, can be analyzed using a unified calculation process in the VFIFE method according to the fundamental theories of point value description, path element, and reverse motion. This method enables analysis without the need to integrate the stiffness matrix of the structure, because only motion equations of particles established according to Newton's second law are required. These characteristics of the VFIFE facilitate the modeling and computation efficiencies in analyzing the nonlinear dynamic problem of flexible pipe with large deflections. In this study, a three-dimensional (3-D) dynamical model based on 3-D beam element was established according to the VFIFE method. The deep-sea flexible pipe was described by a set of spatial mass particles linked by 3-D beam element. The motion and configuration of the pipe are determined by these spatial particles. Based on this model, a simulation procedure to predict the 3-D dynamical behavior of flexible pipe was developed and verified. It was found that the spatial configuration and static internal force of the mining pipe can be obtained by calculating the stationary state of pipe motion. Using this simulation procedure, an analysis was conducted on the static and dynamic behaviors of the flexible mining pipe based on a 1000-m sea trial system. The results of the analysis proved that the VFIFE method can be efficiently applied to the static and dynamic analyses of marine pipes.

Measurement and Simulation of Wide-area Frequency in US Eastern Interconnected Power System

  • Kook, Kyung Soo;Liu, Yilu
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.472-477
    • /
    • 2013
  • An internet-based, real-time GPS synchronized wide-area power system frequency monitoring network(FNET) has been monitoring wide-area power system frequency in continuous time in the United States. This paper analyzes the FNET measurement to the verified disturbances in the US eastern interconnected power system and simulates it using the dynamic system model. By comparing the frequency measurements with its simulation results to the same disturbances in detail, this paper finds that the sequence of monitoring points to detect the frequency fluctuation caused by the disturbances is matched well in the measured data and the simulation results. The similarity comparison index is also proposed to quantify the similarity of the compared cases. The dynamic model based simulation result is expected to compensate for the lack of FNET measurement in its applications.

Design and Implementation of Client-Server Model on Virtual Real-time Interactive Distributed Simulation Environment Using Web (웹을 이용한 가상 실시간 상호작용 분산 시뮬레이션 환경엣 클라이언트-서버 모델의 설계 및 구현)

  • Jeong, Jin-Rip;U, Yeong-Je;Jeong, Chang-Seong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.1
    • /
    • pp.57-65
    • /
    • 1999
  • The simulation which is larger scale, complex and interactive with clients treat a lot of messages. It can be thinking more efficient distributed simulation than sequential one. The training simulation with multi-users is geographically distributed, and required high cost to operate and maintain system as increasing user requirements. The adaptation of web technology to the simulation can be a way to solves it without cost added. But dynamic web environment can causes causality error of events. This paper is concerned with client-server model, which supports interaction between distributed simulation server and web browser, and it is implemented by Java distributed object model. the result have shown that the distributed simulation is performed correctly on dynamic environment.

  • PDF

Dynamic Analysis of PEM fuel cell system (PEM 연료전지시스템의 동특성 해석)

  • Kim Beomsoo;Jeon Soonil;Lim Wonsik;Park Yeong-il
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.353-356
    • /
    • 2005
  • We developed a dynamic model of PEM fuel cell system which can analyze its transient response to dynamic load current. System components such as compressor, air cooler, humidifier, and stack were modeled based on their dynamic equations and performance maps by using Matlab Simulink platform. Through this simulation model, dynamic characteristics of fuel cell system including oxygen excess rat io, stack voltage, and system efficiency were shown. In addition to that, we briefly analyzed the humidity effect on cathode pressure and system efficiency, expecting that this model can be further used to optimize fuel cell system parameters just like operating pressure and temperature, humidity and oxygen excess ratio.

  • PDF