• 제목/요약/키워드: Dynamic response model

검색결과 1,971건 처리시간 0.039초

다양한 경사를 가지는 제방모형의 지반 증폭 특성 (Dynamic Response Characteristics of Embankment Model for Various Slope Angles)

  • 김호연;김용;이용희;김학성;김대현
    • 한국지반신소재학회논문집
    • /
    • 제19권2호
    • /
    • pp.35-46
    • /
    • 2020
  • 본 연구는 제방모형의 사면 경사에 따른 가속도 증폭특성을 분석하기 위하여 진동대 실험을 수행하였으며, 경계조건의 영향을 최소화할 수 있는 연성토조를 활용하였다. 제방모형의 수직 대 수평 경사는 각각 1:1, 1:1.5, 1:2로 설정되었으며, 위치에 따른 지반증폭을 계측하기 위하여 12개의 가속도계가 축소모형 내부에 매설되었다. 주파수에 따른 지반의 응답을 파악하기 위하여 축소모형에는 다양한 주파수 특성을 갖는 지진동이 가진되었다. 실험 결과, 사면의 경사가 클수록 지반증폭이 더 커짐을 실험적으로 확인하였다. 또한, 본 연구에서 활용된 실험 시스템의 신뢰성을 검토하기 위하여 1차원 지반응답해석 결과와 수평지반 모형에서의 실험 결과를 비교하였다.

Along-wind simplified analysis of wind turbines through a coupled blade-tower model

  • Spagnoli, Andrea;Montanari, Lorenzo
    • Wind and Structures
    • /
    • 제17권6호
    • /
    • pp.589-608
    • /
    • 2013
  • A model is proposed to analyse the along-wind dynamic response of upwind turbines with horizontal axis under service wind conditions. The model takes into account the dynamic coupling effect between rotor blades and supporting tower. The wind speed field is decomposed into a mean component, accounting for the well-known wind shear effect, and a fluctuating component, treated through a spectral approach. Accordingly, the so-called rotationally sampled spectra are introduced for the blades to account for the effect of their rotating motion. Wind forces acting on the rotor blades are calculated according to the blade element momentum model. The tower shadow effect is also included in the present model. Two examples of a large and medium size wind turbines are modelled, and their dynamic response is analysed and compared with the results of a conventional static analysis.

노면가진에 의한 차체의 동적거동에 관한 연구 (Computer Simulation of Dynamic Response of Vehicles on Rough Ground)

  • 조선휘;이건우;박종근;조병관;송성재;한규진
    • 대한기계학회논문집
    • /
    • 제12권3호
    • /
    • pp.419-425
    • /
    • 1988
  • 본 연구에서는 노면의 요철에 의한 차량의 동적반응을 구할 수 있도록 국내의 소형 승용차를 모델로 현가장치의 비선형성을 고려한 전체 10 자유도의 동역학적 모델 을 개발하였다. 모델을 개발함에 있어서 기본적으로 실차의 모든 요소들을 모델링하 려고 노력하였으며 그 이유는 본 연구에서 개발된 모델이 실차의 현가장치 부품 설계 에 사용되도록 하기 위함이다.

필댐의 지진응답 해석 (Dynamic response Analysis of Rockfill Dam)

  • 이종욱
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall
    • /
    • pp.113-120
    • /
    • 1999
  • When we design the large rockfill dams the safety of dams against the quake must be considered. Generally pseudostatic analysis method has been used for slope stability and evaluation of safety but the case of dynamic response analysis of earthquake was not in general in Korea. Therefore we need to perform the dynamic response analysis of rockfill dams from these results we analyze the dynamic behavior of dam body such as response displacement and response acceleration. consequently we analyse the selected model of rockfill dam using the FLAC-2D (FDM) program.

  • PDF

관류보일러 스팀 온도의 동역학 행렬 제어에 관한 연구 (A Study on Dynamic Matrix Control to Boiler Steam Temperature)

  • 김우헌;문운철
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.323-325
    • /
    • 2009
  • In this paper, we present simulation results of Dynamic Matrix Control(DMC) to a boiler steam temperature. In order to control of steam temperature, we choose the input-output variables and generate the step response model by each input variable's step test. After that, the control structure executes on-line control with optimization using step response model. Proposed controller is applied to the APESS(Doosan company's boiler model simulator) and it is observed that the simulation results show satisfactory performance of proposed control.

  • PDF

Model test method for dynamic responses of bridge towers subjected to waves

  • Chengxun Wei;Songze Yu;Jiang Du;Wenjing Wang
    • Structural Engineering and Mechanics
    • /
    • 제86권6호
    • /
    • pp.705-714
    • /
    • 2023
  • In order to establish a dynamic model test method of bridge pylons subjected to ocean waves, the similarity method of hydroelastic model test for bridge pylons were analyzed systematically, and a model design and production method was proposed. Using this method, a dynamic test model of a bridge pylon was made, and then a free vibration test on the model structure and a dynamic response test of the model structure under wave actions were conducted in a wave flume. The results of the free vibration test show that the primary natural frequencies of the structure by the model test are close to the design frequencies of the prototype structure, indicating that the dynamic characteristics of the bridge pylon are well simulated by the model structure. The results of the dynamic response test show that wave induced base shear forces and motion responses on the model structure are consistent with the numerical results of the prototype structure. The model test results confirm that the proposed model test design method is feasible and applicable. It has application and reference significances for model testing studies of such marine bridge structures.

Chaotic Response of a Nonlinear Vehicle Model and Elimination of the Chaos

  • Lai, Edmund;Park, Chan-Gook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.106.6-106
    • /
    • 2001
  • In this paper, a four-degree-of-freedom non-linear model is developed to study the dynamic response of vehicle that is caused by the disturbance from the road. The chaotic vibration of the model is investigated with numerical simulation. The model displays complicated dynamic responses including harmonic motions and chaos. It is found that changing of the damping coefficients of the system can eliminate the chaotic response.

  • PDF

Dynamic Model to Predict Effect of Race Waviness on Vibrations Associated with Deep-Groove Ball Bearing

  • Hwang, Pyung;Nguyen, Van Trang
    • Tribology and Lubricants
    • /
    • 제30권1호
    • /
    • pp.64-70
    • /
    • 2014
  • This paper presents a numerical model for investigating the structural dynamics response of a rigid rotor supported on deep-groove ball bearings. The numerical model was used to investigate the influence of race waviness on the dynamic characteristics of a rotor ball bearing system, which is very important from a design viewpoint. The forth-order Runge-Kutta numerical integration technique was applied to determine the time displacement response, Poincare map, and frequency spectra. The analysis demonstrated that the model can be used as a tool for predicting the nonlinear dynamic behavior of a rotor ball bearing system under different operating conditions. The results of this study may help further understanding of the nonlinear dynamics of a rotor bearing system.

Dynamic response analysis of floating offshore wind turbine with different types of heave plates and mooring systems by using a fully nonlinear model

  • Waris, Muhammad Bilal;Ishihara, Takeshi
    • Coupled systems mechanics
    • /
    • 제1권3호
    • /
    • pp.247-268
    • /
    • 2012
  • A finite element model is developed for dynamic response prediction of floating offshore wind turbine systems considering coupling of wind turbine, floater and mooring system. The model employs Morison's equation with Srinivasan's model for hydrodynamic force and a non-hydrostatic model for restoring force. It is observed that for estimation of restoring force of a small floater, simple hydrostatic model underestimates the heave response after the resonance peak, while non-hydrostatic model shows good agreement with experiment. The developed model is used to discuss influence of heave plates and modeling of mooring system on floater response. Heave plates are found to influence heave response by shifting the resonance peak to longer period, while response after resonance is unaffected. The applicability of simplified linear modeling of mooring system is investigated using nonlinear model for Catenary and Tension Legged mooring. The linear model is found to provide good agreement with nonlinear model for Tension Leg mooring while it overestimates the surge response for Catenary mooring system. Floater response characteristics under different wave directions for the two types of mooring system are similar in all six modes but heave, pitch and roll amplitudes is negligible in tension leg due to high restraint. The reduced amplitude shall lead to reduction in wind turbine loads.

Seismic analysis of AL2O3 nanoparticles-reinforced concrete plates based on sinusoidal shear deformation theory

  • Amoli, Abolfazl;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Earthquakes and Structures
    • /
    • 제15권3호
    • /
    • pp.285-294
    • /
    • 2018
  • In this study, nonlinear dynamic response of a concrete plate retrofit with Aluminium oxide ($Al_2O_3$) under seismic load and magnetic field is investigated. The plate is a composite reinforced by Aluminium oxide with characteristics of the equivalent composite being determined using Mori-Tanka model considering agglomeration effect. The plate is simulated with higher order shear deformation plate model. Employing nonlinear strains-displacements, stress-strain, the energy equations of column was obtained and using Hamilton's principal, the governing equations were derived. Differential quadrature method (DQM) in conjunction with Newark method is applied for obtaining the dynamic response of structure. The influences of magnetic field, volume percent of nanoparticles, geometrical parameters of column, agglomeration and boundary conditions on the dynamic response were investigated. Results showed that with increasing volume percent of nanoparticles, the dynamic deflection decreases.