• Title/Summary/Keyword: Dynamic response control

Search Result 1,128, Processing Time 0.026 seconds

Analyses of the Cost function for the Reductions of the Dynamic Response and the Vibrational Intensity of a Discrete System and Its Elastic Supporting Beam (이산계와 탄성 지지보의 동응답 및 진동 인텐시티 저감을 위한 목적함수 해석)

  • Kim, Gi-Man;Choi, Seong-Dae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.83-91
    • /
    • 2010
  • In this paper, the feasibility of the cost function having two control factors were discussed in compared to two others which has one different control factor respectively. As of the control factors, the dynamic response of a discrete system and the vibrational intensity at the reference point which is the connecting point of a discrete system to a flexible beam were controlled actively by the control force obtained from the minimization of the cost function. The method of feedforward control was employed for the control strategy. The reduction levels of the dynamic response of a discrete system and the vibrational intensity at a reference point, and also the input power induced by the control force were evaluated numerically in cases of the three different cost functions. In comparison with the results obtained from the cost functions of one control factor, which is the dynamic response or the vibrational intensity, in most cases of the cost function of two control factors the better or similar results were obtained. As a conclusion, it is surely noted that both the dynamic response and the vibrational intensity of the vibrating system be controlled up to the expected level by using the single cost function having two control factors.

Dynamic response analysis of closed loop control system for intelligent truss structures based on probability

  • Gao, W.;Chen, J.J.;Ma, H.B.;Ma, X.S.;Cui, M.T.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.2
    • /
    • pp.239-248
    • /
    • 2003
  • The dynamic response analysis of closed loop control system based on probability for the intelligent truss structures with random parameters is presented. The expressions of numerical characteristics of structural dynamic response of closed loop control system are derived by means of the mode superposition method, in which the randomness of physical parameters of structural materials, geometric dimensions of active bars and passive bars, applied loads and control forces are considered simultaneously. The influences of the randomness of them on structural dynamic response are inspected by several engineering examples and some significant conclusions are obtained.

Dynamic Response Control of a Flexible Wing using Sliding Mode Control (슬라이딩 모드 제어기법을 이용한 유연날개 동적 응답 제어)

  • Lee, Sang-Wook;Suk, Jinyoung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.522-527
    • /
    • 2013
  • In this study, dynamic response control of a flexible wing such as gust loads alleviation using sliding mode control method is presented. To achieve this purpose, trailing edge control surface of a flexible wing is used as control means generating the aerodynamic control force. Aeroservoelastic CASE) model consisting of aeroelastic plant, control surface actuator model, and gust model depicting the atmospheric turbulence is formulated in the state space. A sliding mode controller based on the estimated state vector is designed for active dynamic response control of flexible wing aeroservoelastic model. The performance of the controller designed is demonstrated via numerical simulation for the representative flexible wing model under atmospheric turbulence loading.

  • PDF

A Study on the Step Response Model Development of a Dynamic Matrix Control(DMC) For Boiler-Turbine Systems in a Fossil Power Plant (화력발전 보일러-터빈 시스템을 위한 Dynamic Matrix Control(DMC)의 계단응답모델 선정에 관한 연구)

  • Moon, Un-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.5
    • /
    • pp.125-133
    • /
    • 2006
  • This paper presents comparison results of Step Response Model of Dynamic Matrix Control(DMC) for a drum-type boiler-turbine system of a fossil power plant. Two possible kinds of step response models are investigated in designing the DMC, one is developed with the linearization of theoretical model and the other is developed with the process step-test data. Then, the control performances of each model-based DMC are simulated and evaluated. It is observed that the simulation results with the step-response model based on the test data show satisfactory results, while the linearized model is not suitable for the control of boiler-turbine system.

Improvement of Dynamic Response for IPMSM based on DTC-CFTC Using Sliding Mode Control (일정 스위칭 주파수를 가지는 DTC 기반 IPMSM의 슬라이딩 모드 제어를 이용한 속응성 향상)

  • Han, Byeol;Bak, Yeongsu;Lee, Kyo-Beum
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.628-635
    • /
    • 2019
  • This paper proposes sliding mode control (SMC) method for improvement of dynamic response for IPMSM based on DTC with constant switching frequency. DTC with constant switching frequency method consists of PI torque controller and triangular comparator for constant torque error status. It has the poor dynamic response compared to conventional DTC. This paper proposes improvement method of dynamic response of DTC with constant switching frequency by using SMC. Simulation results confirm the effectiveness of the proposed method.

Active Control of Vibrational Intensity in a Compound Vibratory System (복합진동계의 진동 인텐시티 능동 제어)

  • Kim, Gi-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.109-118
    • /
    • 2002
  • The vibrational intensity and the dynamic response of a compound vibratory system had been controlled actively by means of a feedforward control method. A compound vibratory system consists of a flexible beam and two discrete systems - a vibrating source and a dynamic absorber. By considering the interactive motions between discrete systems and a flexible beam, the equations of motion for a compound vibratory system were derived using a method of variation of parameters. To define the optimal conditions of a controller the cost function, which denotes a time averaged power flow, was evaluated numerically. The possibility of reductions of both of vibrational intensity and dynamic response at a control point located at a distance from a source were fecund to depend on the positions of a source, a control point and a controller. Especially the presence of a dynamic absorber gives the more reduction on the dynamic response but the less on the vibrational intensity than those without a dynamic absorber.

Pulse-width Adjustment Strategy for Improving the Dynamic Inductor Current Response Performance of a Novel Bidirectional DC-DC Boost Converter

  • Li, Mingyue;Yan, Peimin
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.34-44
    • /
    • 2018
  • This paper presents a pulse-width adjustment (PWA) strategy for a novel bidirectional DC-DC boost converter to improve the performance of the dynamic inductor current response. This novel converter consists of three main components: a full-bridge converter (FBC), a high-frequency isolated transformer with large leakage inductance, and a three-level voltage-doubler rectifier (VDR). A number of scholars have analyzed the principles, such as the soft-switching performance and high-efficiency characteristic, of this converter based on pulse-width modulation plus phase-shift (PPS) control. It turns out that this converter is suitable for energy storage applications and exhibits good performance. However, the dynamic inductor current response processes of control variable adjustment is not analyzed in this converter. In fact, dc component may occur in the inductor current during its dynamic response process, which can influence the stability and reliability of the converter system. The dynamic responses under different operating modes of a conventional feedforward control are discussed in this paper. And a PWA strategy is proposed to enhance the dynamic inductor current response performance of the converter. This paper gives a detailed design and implementation of the PWA strategy. The proposed strategy is verified through a series of simulation and experimental results.

Distributed parameters modeling for the dynamic stiffness of a spring tube in servo valves

  • Lv, Xinbei;Saha, Bijan Krishna;Wu, You;Li, Songjing
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.327-337
    • /
    • 2020
  • The stability and dynamic performance of a flapper-nozzle servo valve depend on several factors, such as the motion of the armature component and the deformation of the spring tube. As the only connection between the armature component and the fixed end, the spring tube plays a decisive role in the dynamic response of the entire system. Aiming at predicting the vibration characteristics of the servo valves to combine them with the control algorithm, an innovative dynamic stiffness based on a distributed parameter model (DPM) is proposed that can reflect the dynamic deformation of the spring tube and a suitable discrete method is applied according to the working condition of the spring tube. With the motion equation derived by DPM, which includes the impact of inertia, damping, and stiffness force, the mathematical model of the spring tube dynamic stiffness is established. Subsequently, a suitable program for this model is confirmed that guarantees the simulation accuracy while controlling the time consumption. Ultimately, the transient response of the spring tube is also evaluated by a finite element method (FEM). The agreement between the simulation results of the two methods shows that dynamic stiffness based on DPM is suitable for predicting the transient response of the spring tube.

Development of automatic measurement system for dynamic respose time of pneumatic solenoid valve (공압밸브의 동적응답 특성측정 자동화 시스템 개발)

  • 강보식;김형의
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.974-978
    • /
    • 1991
  • Electro-pneumatic valve is an electro-mechanical device which converts electric signal into pneumatic flow mu or pressure. A measurement of dynamic response time is very important to evaluate valve performance. Dynamic response time of electro-pneumatic valve has a variation accordance with valve types, operating way and test standard. In this study, automatic measurement system of dynamic response time is composed based on test condition of dynamic response time test standard(CETOP, JIS). Also, in this study test pressure variation characteristics accordance with variation of solenoid excitation power, and we developed dynamic response measurement system enable to compare of and analyze these two characteristics.

  • PDF

A Study on Dynamic Matrix Control to Boiler Steam Temperature (관류보일러 스팀 온도의 동역학 행렬 제어에 관한 연구)

  • Kim, Woo-Hun;Moon, Un-Chul
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.323-325
    • /
    • 2009
  • In this paper, we present simulation results of Dynamic Matrix Control(DMC) to a boiler steam temperature. In order to control of steam temperature, we choose the input-output variables and generate the step response model by each input variable's step test. After that, the control structure executes on-line control with optimization using step response model. Proposed controller is applied to the APESS(Doosan company's boiler model simulator) and it is observed that the simulation results show satisfactory performance of proposed control.

  • PDF