• 제목/요약/키워드: Dynamic response analysis

검색결과 2,893건 처리시간 0.032초

차량하중에 의한 주변지반의 진동해석 (Dynamic analysis Ground using 2-D FEM)

  • 황성춘;강보순;심형섭;오병헌;박성진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.642-647
    • /
    • 2001
  • Dynamic response of ground due to train loads is analyzed. A numerical procedure based on finite element method is used to solve two-dimensional ground response. Dynamic train loads assumed in analysis is the point acceleration on train rail with magnitude of 2330 gal and thickness of surface of soil layer assumed is 60cm. In order to consider the effect of acceleration point, dynamic responses such as response acceleration and displacement are computed as a function of distance from acceleration point on rail. In addition, simple methods which reduce dynamic effects on ground are also proposed.

  • PDF

준 경험적 방법에 의한 발파진동원의 특성과 구조물 동적 해석에 관한 연구 (A Study on Dynamic Structural Analysis for Blast Vibration by using Semi-Empirical Method)

  • 손성완;김준호;정석영;홍성경;김동용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.271-276
    • /
    • 2001
  • Most engineers, related to soil and civil dynamic field, have been interested in the dynamic response of building transmitted from soil and rock to structure due to blasting. However it is not easy to estimate the dynamic response of structures and utilities due to blasting by using analytical method because of difficulties of soil modeling, prediction of excitation force and so on. In this paper, dynamic response analysis have been performed to predict vibration levels of structure due to blasting and the semi-empirical method. which is based on vibration measurement data. has been employed to consider blast vibration characteristics.

  • PDF

On the absolute maximum dynamic response of a beam subjected to a moving mass

  • Lotfollahi-Yaghin, Mohammad Ali;Kafshgarkolaei, Hassan Jafarian;Allahyari, Hamed;Ghazvini, Taher
    • Structural Engineering and Mechanics
    • /
    • 제54권1호
    • /
    • pp.55-67
    • /
    • 2015
  • Taking the mid-span/center-point of the structure as the reference point of capturing the maximum dynamic response is very customary in the available literature of the moving load problems. In this article, the absolute maximum dynamic response of an Euler-Bernoulli beam subjected to a moving mass is widely investigated for various boundary conditions of the base beam. The response of the beam is obtained by utilizing a robust numerical method so-called OPSEM (Orthonormal Polynomial Series Expansion Method). It is underlined that the absolute maximum dynamic response of the beam does not necessarily take place at the mid-span of the beam and thus the conventional analysis needs modifications. Therefore, a comprehensive parametric survey of the base beam absolute maximum dynamic response is represented in which the contribution of the velocity and weight of the moving inertial objects are scrutinized and compared to the conventional version (maximum at mid-span).

열차하중에 의한 이층노반구조의 동적 응답특성 (Dynamic Response Characteristics for Two-layered Trackbed Structure by Train Load)

  • 이일화
    • 한국철도학회논문집
    • /
    • 제14권2호
    • /
    • pp.160-166
    • /
    • 2011
  • 열차하중에 의한 토공노반의 동적응답은 다양한 주변환경에 종속적이기 때문에 정확한 특성을 규명하는 것은 어렵다. 그러나 일부 궤도틀림의 원인이 노반의 불균일한 지지력과 이에 따른 동적 응답의 영향일 것으로 예상되기 때문에 다양한 궤도틀림원인 분석 및 대책에 대한 연구를 위해서는 노반의 동적응답에 대한 연구가 필요하다. 본 논문에서는 노반의 동적응답이 궤도변형에 미치는 영향을 분석하기 위한 기초연구로서 여러가지 영향조건 중 노반의 구조와 재료강성의 변화에 따른 노반의 탁월 주파수와 진동에너지의 크기에 대한 응답을 검토하였다. 검토단면은 탁월대역의 에너지 증폭이 쉬운 이 층노반구조로서 노반과 연암으로 구성하였다. 검토내용은 각 조건별 파의 전파특성을 규명하고 노반의 동적응답을 이론적, 해석적, 경험적 방법으로 비교 검토하여 궤도틀림에 미치는 영향을 평가하였다.

Earthquake analysis of NFRP-reinforced-concrete beams using hyperbolic shear deformation theory

  • Rad, Sajad Shariati;Bidgoli, Mahmood Rabani
    • Earthquakes and Structures
    • /
    • 제13권3호
    • /
    • pp.241-253
    • /
    • 2017
  • In this paper, dynamic response of the horizontal nanofiber reinforced polymer (NFRP) strengthened concrete beam subjected to seismic ground excitation is investigated. The concrete beam is modeled using hyperbolic shear deformation beam theory (HSDBT) and the mathematical formulation is applied to determine the governing equations of the structure. Distribution type and agglomeration effects of carbon nanofibers are considered by Mori-Tanaka model. Using the nonlinear strain-displacement relations, stress-strain relations and Hamilton's principle (virtual work method), the governing equations are derived. To obtain the dynamic response of the structure, harmonic differential quadrature method (HDQM) along with Newmark method is applied. The aim of this study is to investigate the effect of NFRP layer, geometrical parameters of beam, volume fraction and agglomeration of nanofibers and boundary conditions on the dynamic response of the structure. The results indicated that applied NFRP layer decreases the maximum dynamic displacement of the structure up to 91 percent. In addition, using nanofibers as reinforcement leads a 35 percent reduction in the maximum dynamic displacement of the structure.

부지효과를 고려한 2차원 평면상의 지진응답해석 (Seismic Response Analysis Considering the Site Effect in Two Dimensional Cases)

  • 김민규;임윤묵;김문겸
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.83-90
    • /
    • 2001
  • The site effects of local geological conditions on seismic ground motion are performed using 2D numerical method. For the analysis, a numerical method far ground response analysis using FE-BE coupling method is developed. The total system is divided into two parts so called far field and near field. The far field is modeled by boundary element formulation using the multi-layered dynamic fundamental solution that satisfied radiational condition of wave. And this is coupled with near field modeled by finite elements. In order to verify the seismic response analysis, the results are compared with those of commercial code. As a result, it is shown that the developed method can be an efficient numerical method to solve the seismic response analysis of the site effect in 2D problem.

  • PDF

LRB 면진 장치를 갖는 100m 단층 래티스 돔의 지진 응답에 대한 감소 효과 분석 (Reducing Effect Analysis on Earthquake Response of 100m Spanned Single-Layered Lattice Domes With LRB Seismic Isolation System)

  • 박강근;이동우
    • 한국공간구조학회논문집
    • /
    • 제19권1호
    • /
    • pp.53-64
    • /
    • 2019
  • The objective of this study is to investigate the earthquake response for the design of 100m spanned single-layer lattice dome. The plastic hinge analysis and eigenvalue buckling analysis are performed to estimate the ultimate load of single-layered lattice domes under vertical loads. In order to ensure the stability of lattice domes, it is investigated for the plastic hinge progressive status by the pushover increment analysis considering the elasto-plastic connection. One of the most effective methods to reduce the earthquake response of large span domes is to install the LRB isolation system of a dome. The authors discuss the reducing effect for the earthquake dynamic response of 100m spanned single-layered lattice domes. The LRB seismic isolation system can greatly reduce the dynamic response of lattice domes for the horizontal and vertical earthquake ground motion.

LNG 화물창 단열구조의 슬로싱 충격응답 간이해석법에 관한 연구 (A Study on Simplified Sloshing Impact Response Analysis for Membrane-Type LNG Cargo Containment System)

  • 노인식;기민석;김성찬
    • 대한조선학회논문집
    • /
    • 제48권5호
    • /
    • pp.451-456
    • /
    • 2011
  • To ensure structural integrity of membrane type LNG tank, the rational assessment of the sloshing impact responses of tank structures should be preceded. The sloshing impact pressures acting on the insulation system of LNG tank are typical irregular loads and the resulting structural responses show very complex behaviors accompanied with fluid structure interaction. So it is not easy to estimate them accurately and immense time consuming calculation process would be necessary. In this research, a simplified method to analyse the dynamic structural responses of LNG tank insulation system under pressure time histories obtained by sloshing model test or numerical analysis was studied. The proposed technique based on the concept of linear combination of the triangular response functions which are the transient responses of structures under the unit triangular impact pressure acting on structures. The validity of suggested method was verified through the example calculations and applied to the dynamic structural response analysis of a real Mark III membrane type insulation system using the sloshing impact pressure time histories obtained by model test.

지진하중을 받는 고층건물의 동적응답 해석에 관한 연구 (A Study on Dynamic Response Analysis of High Structure under Earthquake Load)

  • 배동명;신창혁
    • 수산해양기술연구
    • /
    • 제36권4호
    • /
    • pp.337-346
    • /
    • 2000
  • Earthquake is a natural disaster accompanied by damage of human and properties caused by the ground motion, crustal movements, faults as well as tidal wave. The earthquake is known to occur mostly in earthquake-prone areas and the Korean Peninsula is known to be relatively safe in terms of geological characteristics. In order to withstand on severe environmental dynamic random load such as an earthquake, the large structure need to be designed to withstand the anticipated seismic tremor. The seismetic design is essential for building structures, bridges, and large structures which is handles explosive gases. Thus, the necessity of earthquake resistant analysis for large structure is growing and the capability of dynamic analysis should be obtained. In this thesis, dynamic responses of a high building(height 60m, width 18) which subjected to random earthquake load are presented which responses are derived using dynamic analysis methods such as response spectrum analysis, mode superposition and direct integration. Each results are also compared to review the merit of each methods.

  • PDF

하부구조의 고유진동수비에 따른 래티스돔의 동적응답특성에 관한 연구 (A Study on Dynamic Response Property of Latticed Domes according to Natural Frequency Ratio of Substructure)

  • 이영락;석근영;강주원
    • 한국공간구조학회논문집
    • /
    • 제16권3호
    • /
    • pp.59-66
    • /
    • 2016
  • This study analyze the dynamic response property of latticed domes according to natural frequency ratio of substructure. Through eigenvalue analysis, it is was confirmed that the half-open angle $30^{\circ}$ and $45^{\circ}$ dominate vibration mode of the vertical direction and the half-open angle $60^{\circ}$ and $90^{\circ}$ dominate vibration mode of the horizontal direction. Through the dynamic response analysis, it is was confirmed that the first frequency about total structure largely appears about the vertical and the horizontal direction regardless of half-open angle.