• 제목/요약/키워드: Dynamic numerical modeling

검색결과 469건 처리시간 0.023초

탄소성 변형을 고려한 타이로드 고정 회전체의 동역학 해석 (Dynamic Analysis of Tie-rod-fastened Rotor Considering Elastoplastic Deformation)

  • 서동찬;김경희;이도훈;이보라;서준호
    • Tribology and Lubricants
    • /
    • 제40권1호
    • /
    • pp.8-16
    • /
    • 2024
  • This study conducts numerical modeling and eigen-analysis of a rod-fastened rotor, which is mainly used in aircraft gas turbine engines in which multiple disks are in contact through curvic coupling. Nayak's theory is adopted to calculate surface parameters measured from the tooth profile of the curvic coupling gear. Surface parameters are important design parameters for predicting the stiffness between contact surfaces. Based on the calculated surface parameters, elastoplastic contact analysis is performed according to the interference between two surfaces based on the Greenwood-Williamson model. The equivalent bending stiffness is predicted based on the shape and elastoplastic contact stiffness of the curvic coupling. An equation of motion of the rod-fastened rotor, including the bending stiffness of the curvic coupling, is developed. Methods for applying the bending stiffness of a curvic coupling to the equation of motion and for modeling the equation of motion of a rotor that includes both inner and outer rotors are introduced. Rotordynamic analysis is performed through one-dimensional finite element analysis, and each element is modeled based on Timoshenko beam theory. Changes in bending stiffness and the resultant critical speed change in accordance with the rod fastening force are predicted, and the corresponding mode shapes are analyzed.

공진주 실험의 이론적 모델링에 의한 자료분석 및 해석기법의 제안 (Data Reduction and Analysis Technique for the Resonant Column Testing by Its Theoretical Modeling)

  • 조성호;황선근;강태호;권병성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.291-298
    • /
    • 2003
  • The resonant column testing is a laboratory testing method to determine the shear modulus and the material damping factor of soils. The method has been widely used for many applications and its importance has been increased. Since the establishment of the testing method in 1963, the low-technology electronic devices for testing and data acquisition have limited the measurement to the amplitude of the linear spectrum. The limitations of the testing method were also attributed to the assumption of the linear-elastic material in the theory of the resonant column testing and to the use of the wave equation for the dynamic response of the specimen. For the better theoretical formulation of the resonant column testing, this study derived the equation of motion and provided its solution. This study also proposed the improved data reduction and analysis method for the resonant column testing, based on the advanced data acquisition system and the proposed theoretical solution for the resonant column testing system. For the verification of the proposed data reduction and analysis method, the numerical simulation of the resonant column testing was performed by the finite element analysis. Also, a series of resonant column testing were peformed for Joomunjin sand, which verified the feasibility, of the proposed method and showed the limitations of the conventional data reduction and analysis method.

  • PDF

마찰곡선을 반영한 인공 고관절 마찰소음 유한요소 해석연구 (Investigation of Hip Squeak Using Finite Element Modeling with a Friction Curve)

  • 남재현;박기완;강재영
    • 대한기계학회논문집A
    • /
    • 제40권1호
    • /
    • pp.33-39
    • /
    • 2016
  • 본 논문은 복소수 고유치해석을 통하여 세라믹-세라믹 인공고관절 시스템에서의 동적 불안정성을 연구하고자 하였다. 시스템 파라메터 연구를 통해서 모드 연성 기반의 불안정성을 연구하였고, 음의 기울기를 포함하는 유한요소 해석 모델을 구현하여 음의 기울기에 의한 불안정성에 대해 조사하였다. 그 결과 토션이 지배적인 시스템 모드가 음의 기울기에 의해 불안정해 지며, 이는 축하중에 크게 영향을 받는다는 점을 확인하였다.

추진제의 마이크로 스케일 상면 두께 예측 (Predicting Micro-Thickness of Phase Fronts in Propellants)

  • 여재익
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제25회 추계학술대회논문집
    • /
    • pp.13-21
    • /
    • 2005
  • 이 논문은 발열 반응에서 상이 변화하는 물질의 연속 방정식에서 유도되는 안정된 파면의 구조를 고려했다. 특별히 액체와 기체, 고체와 액체 사이의 동적인 파면 구조를 수치적으로 연구하였다. 1차원 충격파 구조 분석에 근거한 본 연구에 의하면 연소 시 나노 사이즈의 파면이 존재한다고 추정한다. 설명을 위해, 증발과 응축에는 n-heptane이 사용되었고, 용해와 응고에는 HMX를 사용하였다. 이 개념의 확장은 로켓 추진제와 같이 액체, 고체 연료의 넓은 범위 모두를 포함한다.

  • PDF

IEEE 802.16 망을 위한 무선 자원 관리 모델링 (Radio Resource Management Modeling in IEEE 802.16e Networks)

  • 노철우;김경민
    • 한국콘텐츠학회논문지
    • /
    • 제8권1호
    • /
    • pp.169-176
    • /
    • 2008
  • 본 논문에서는 접속 (connection)과 패킷의 두 레벨 (level)을 함께 고려하는 IEEE 802.16 망에서의 무선 자원 관리 큐잉 모델을 개발한다. 상위 레벨인 접속 레벨에서는 대역폭 가용여부와 서비스 클래스별 우선순위 큐를 사용하여 접속 수락제어를 모델링하고 하위 레벨인 패킷 전송은 서비스 클래스별 임계치와 현재 가용한 대역폭의 두 항목을 동시에 고려한 동적 대역폭 할당 방법을 모델링 한다. 계층 모델은 페트리 네트의 확장형인 SRN (Stochastic Reward Nets)을 이용하여 개발되며 802.16서비스 클래스별 트래픽에 대한 대역폭 활용률과 처리율을 성능지표로 모델에 대한 수치결과를 구한다.

페트리네트의 계층화를 통한 시퀀스제어계의 설계(I) - SFC에 근거한 페트리네트의 분할 (Design for Sequential Control System Using Petri Nets with Hierarchical Expression(I) - Division of Petri Nets Based on SFC)

  • 정석권;양주호
    • 한국해양공학회지
    • /
    • 제13권3B호
    • /
    • pp.106-115
    • /
    • 1999
  • Modeling a discrete event system such as a sequential control system is difficult compared with a continuous system. Petri nets have been introduced as an analyzing and design tool for the discrete systems. One of the problems in its applications is that the model can not be analyzed easily in the case of large scale or complicated systems because of increase of the number of components of the system. To overcome this problem, some methods for dividing or reducing Petri nets have been suggested. In this paper, an approach for a hierarchical expression of Petri nets based on Sequential Function Chart(SFC) is proposed. A measuring tank system will be described as a typical kind of discrete systems. The system is modeled by sub Petri nets based on SFC in order to analyze and visualize efficiently about the dynamic behaviors of the system. Some numerical simulations using state equations are performed to prove the validity of the proposed method.

  • PDF

Validation of a smart structural concept for wing-flap camber morphing

  • Pecora, Rosario;Amoroso, Francesco;Amendola, Gianluca;Concilio, Antonio
    • Smart Structures and Systems
    • /
    • 제14권4호
    • /
    • pp.659-678
    • /
    • 2014
  • The study is aimed at investigating the feasibility of a high TRL solution for a wing flap segment characterized by morphable camber airfoil and properly tailored to be implemented on a real-scale regional transportation aircraft. On the base of specific aerodynamic requirements in terms of target airfoil shapes and related external loads, the structural layout of the device was preliminarily defined. Advanced FE analyses were then carried out in order to properly size the load-carrying structure and the embedded actuation system. A full scale limited span prototype was finally manufactured and tested to: ${\bullet}$ demonstrate the morphing capability of the conceived structural layout; ${\bullet}$ demonstrate the capability of the morphing structure to withstand static loads representative of the limit aerodynamic pressures expected in service; ${\bullet}$ characterize the dynamic behavior of the morphing structure through the identification of the most significant normal modes. Obtained results showed high correlation levels with respect to numerical expectations thus proving the compliance of the device with the design requirements as well as the goodness of modeling approaches implemented during the design phase.

회전하는 복합재-VEM 박판보의 GHM 기법을 이용한 진동해석 (The Vibration Analysis of Composite-VEM Thin-Walled Rotating Beam Using GHM Methodology)

  • 박재용;나성수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.337-341
    • /
    • 2004
  • This paper concerns the analytical modeling and dynamic analysis of advanced rotating blade structure implemented by a dual approach based on structural tailoring and viscoelastic materials technology. Whereas structural tailoring uses the directionality properties of advanced composite materials, the passive materials technology exploits the damping capabilities of viscoelastic material(VEM) embedded into the host structure. The structure is modeled as a composite thin-walled beam incorporating a number of nonclassical features such as transverse shear, warping restraint, anisotropy of constituent materials, and warping and rotary inertias. The VEM layer damping treatment is modeled by using the Golla-Mushes-McTavish(GHM) method, which is employed to account for the frequency-dependent characteristic o the VEM. The displayed numerical results provide a comprehensive picture of the synergistic implications of the application of both techniques, namely, the tailoring and damping technology on vibration response of thin-walled beam structure exposed to external time-dependent excitations.

  • PDF

Physics of Solar Flares

  • Magara, Tetsuya
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.26.1-26.1
    • /
    • 2010
  • In this talk we outline the current understanding of solar flares, mainly focusing on magnetohydrodynamic (MHD) processes. A flare causes plasma heating, mass ejection, and particle acceleration which generates high-energy particles. The key physical processes producing a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence), formation of current-concentrated areas (current sheets) in the corona, and magnetic reconnection proceeding in a current sheet to cause shock heating, mass ejection, and particle acceleration. A flare starts with the dissipation of electric currents in the corona, followed by various dynamic processes that affect lower atmosphere such as the chromosphere and photosphere. In order to understand the physical mechanism for producing a flare, theoretical modeling has been develops, where numerical simulation is a strong tool in that it can reproduce the time-dependent, nonlinear evolution of a flare. In this talk we review various models of a flare proposed so far, explaining key features of individual models. We introduce the general properties of flares by referring observational results, then discuss the processes of energy build-up, release, and transport, all of which are responsible for a flare. We will come to a concluding viewpoint that flares are the manifestation of the recovering and ejecting processes of a global magnetic flux tube in the solar atmosphere, which has been disrupted via interaction with convective plasma while rising through the convection zone.

  • PDF

Design, Implementation and Navigation Test of Manta-type Unmanned Underwater Vehicle

  • Kim, Joon-Young;Ko, Sung-Hyub;Cho, So-Hyung;Lee, Seung-Keon;Sohn, Kyoung-Ho
    • International Journal of Ocean System Engineering
    • /
    • 제1권4호
    • /
    • pp.192-197
    • /
    • 2011
  • This paper describes the mathematical modeling, control algorithm, system design, hardware implementation and experimental test of a Manta-type Unmanned Underwater Vehicle (MUUV). The vehicle has one thruster for longitudinal propulsion, one rudder for heading angle control and two elevators for depth control. It is equipped with a pressure sensor for measuring water depth and Doppler Velocity Log for measuring position and angle. The vehicle is controlled by an on-board PC, which runs with the Windows XP operating system. The dynamic model of 6DOF is derived including the hydrodynamic forces and moments acting on the vehicle, while the hydrodynamic coefficients related to the forces and moments are obtained from experiments or estimated numerically. We also utilized the values obtained from PMM (Planar Motion Mechanism) tests found in the previous publications for numerical simulations. Various controllers such as PID, Sliding mode, Fuzzy and $H{\infty}$ are designed for depth and heading angle control in order to compare the performance of each controller based on simulation. In addition, experimental tests are carried out in a towing tank for depth keeping and heading angle tracking.