• 제목/요약/키워드: Dynamic neural network

검색결과 791건 처리시간 0.033초

A nonlinear structural experiment platform with adjustable plastic hinges: analysis and vibration control

  • Li, Luyu;Song, Gangbing;Ou, Jinping
    • Smart Structures and Systems
    • /
    • 제11권3호
    • /
    • pp.315-329
    • /
    • 2013
  • The construction of an experimental nonlinear structural model with little cost and unlimited repeatability for vibration control study represents a challenging task, especially for material nonlinearity. This paper reports the design, analysis and vibration control of a nonlinear structural experiment platform with adjustable hinges. In our approach, magnetorheological rotary brakes are substituted for the joints of a frame structure to simulate the nonlinear material behaviors of plastic hinges. For vibration control, a separate magnetorheological damper was employed to provide semi-active damping force to the nonlinear structure. A dynamic neural network was designed as a state observer to enable the feedback based semi-active vibration control. Based on the dynamic neural network observer, an adaptive fuzzy sliding mode based output control was developed for the magnetorheological damper to suppress the vibrations of the structure. The performance of the intelligent control algorithm was studied by subjecting the structure to shake table experiments. Experimental results show that the magnetorheological rotary brake can simulate the nonlinearity of the structural model with good repeatability. Moreover, different nonlinear behaviors can be achieved by controlling the input voltage of magnetorheological rotary damper. Different levels of nonlinearity in the vibration response of the structure can be achieved with the above adaptive fuzzy sliding mode control algorithm using a dynamic neural network observer.

동적 신경망의 층의 분열과 합성에 의한 비선형 시스템 제어 (Control of Nonlinear System by Multiplication and Combining Layer on Dynamic Neural Networks)

  • 박성욱;이재관;서보혁
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권4호
    • /
    • pp.419-427
    • /
    • 1999
  • We propose an algorithm for obtaining the optimal node number of hidden units in dynamic neural networks. The dynamic nerual networks comprise of dynamic neural units and neural processor consisting of two dynamic neural units; one functioning as an excitatory neuron and the other as an inhibitory neuron. Starting out with basic network structure to solve the problem of control, we find optimal neural structure by multiplication and combining dynamic neural unit. Numerical examples are presented for nonlinear systems. Those case studies showed that the proposed is useful is practical sense.

  • PDF

뉴럴 포텐셜 필드 알고리즘을 이용한 이동 로봇의 지역 경로계획 (Local Path Planning for Mobile Robot Using Artificial Neural Network - Potential Field Algorithm)

  • 박종훈;허욱열
    • 전기학회논문지
    • /
    • 제64권10호
    • /
    • pp.1479-1485
    • /
    • 2015
  • Robot's technology was very simple and repetitive in the past. Nowadays, robots are required to perform intelligent operation. So, path planning has been studied extensively to create a path from start position to the goal position. In this paper, potential field algorithm was used for path planning in dynamic environments. It is used for a path plan of mobile robot because it is elegant mathematical analysis and simplicity. However, there are some problems. The problems are collision risk, avoidance path, time attrition. In order to resolve path problems, we amalgamated potential field algorithm with the artificial neural network system. The input of the neural network system is set using relative velocity and location between the robot and the obstacle. The output of the neural network system is used for the weighting factor of the repulsive potential function. The potential field algorithm problem of mobile robot's path planning can be improved by using artificial neural network system. The suggested algorithm was verified by simulations in various dynamic environments.

Nonlinear Networked Control Systems with Random Nature using Neural Approach and Dynamic Bayesian Networks

  • Cho, Hyun-Cheol;Lee, Kwon-Soon
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권3호
    • /
    • pp.444-452
    • /
    • 2008
  • We propose an intelligent predictive control approach for a nonlinear networked control system (NCS) with time-varying delay and random observation. The control is given by the sum of a nominal control and a corrective control. The nominal control is determined analytically using a linearized system model with fixed time delay. The corrective control is generated online by a neural network optimizer. A Markov chain (MC) dynamic Bayesian network (DBN) predicts the dynamics of the stochastic system online to allow predictive control design. We apply our proposed method to a satellite attitude control system and evaluate its control performance through computer simulation.

GMDH 알고리즘을 이용한 모델링 및 제어에 관한 연구 (A Study onthe Modelling and control Using GMDH Algorithm)

  • 최종헌;홍연찬
    • 한국지능시스템학회논문지
    • /
    • 제7권3호
    • /
    • pp.65-71
    • /
    • 1997
  • 신경 회로망의 출현으로 비선형 시스템 모델링에 대한 관힘이 다시 고조되고 있다. 따라서 본 논문에서는 미지의 비선형 시스템을 동적으로 인식하기 위해 GMDH(Group Method of Data Handling) 일고리즘을 사용한 DPNN(Dynamic Polynomial Neural Network)을 제안한다. GMDH를 사용한 동적 시스템의 인신은 일렬의 입/출력 데이타를 인가하여 필요한 계수들의 집합을 동적으로 산출함으로써 훈련시킨다. 또한 DPNN을 이용하여 비선형 시스템을 제어하기 위해, MRA(Model Reference Adaptive Control)를 설계한다. 결과에서 컴퓨터 시뮬레이션을 통해 DPNN을 사용한 모델링과 제어가 잘 수행됨을 알 수 있었다.

  • PDF

신경망을 이용한 도로터널 오염물질 동적 모델 (Dynamic Model of the Road Tunnel Pollution by Neural Networks)

  • 한도영;윤진원
    • 설비공학논문집
    • /
    • 제16권9호
    • /
    • pp.838-844
    • /
    • 2004
  • In a long road tunnel, a tunnel ventilation system may be used in order to reduce the pollution below the required level. To develop control algorithms for a tunnel ventilation system, a dynamic simulation program may be used to predict the pollution level in a tunnel. Research was carried out to develop better pollution models for a tunnel ventilation control system. A neural network structure was adopted and compared by using actual poilution data. Simulation results showed that the dynamic model developed by a neural network may be effective for the development of tunnel ventilation control algorithms.

신경회로망을 이용한 밀링 공정의 진동 예측 (Vibration Prediction in Mill Process by Using Neural Network)

  • 이신영
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.272-277
    • /
    • 2003
  • In order to predict vibration during end-milling process, the cutting dynamics was modelled by using neural network and combined with structural dynamics by considering dynamic cutting states. Specific cutting constants of the cutting dynamics model were obtained by averaging cutting forces and tool diameter, cutting speed, feed, axial depth radial depth were considered as machining factors. Cutting farces by test and by neural network simulation were compared and the vibration during end-milling was simulated.

  • PDF

A Novel Second Order Radial Basis Function Neural Network Technique for Enhanced Load Forecasting of Photovoltaic Power Systems

  • Farhat, Arwa Ben;Chandel, Shyam.Singh;Woo, Wai Lok;Adnene, Cherif
    • International Journal of Computer Science & Network Security
    • /
    • 제21권2호
    • /
    • pp.77-87
    • /
    • 2021
  • In this study, a novel improved second order Radial Basis Function Neural Network based method with excellent scheduling capabilities is used for the dynamic prediction of short and long-term energy required applications. The effectiveness and the reliability of the algorithm are evaluated using training operations with New England-ISO database. The dynamic prediction algorithm is implemented in Matlab and the computation of mean absolute error and mean absolute percent error, and training time for the forecasted load, are determined. The results show the impact of temperature and other input parameters on the accuracy of solar Photovoltaic load forecasting. The mean absolute percent error is found to be between 1% to 3% and the training time is evaluated from 3s to 10s. The results are also compared with the previous studies, which show that this new method predicts short and long-term load better than sigmoidal neural network and bagged regression trees. The forecasted energy is found to be the nearest to the correct values as given by England ISO database, which shows that the method can be used reliably for short and long-term load forecasting of any electrical system.

신경회로망을 이용한 비선형 플랜트의 적응제어 (Adaptive controls for non-linear plant using neural network)

  • 정대원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.215-218
    • /
    • 1997
  • A dynamic back-propagation neural network is addressed for adaptive neural control system to approximate non-linear control system rather than static networks. It has the capability to represent the approximation of nonlinear system without mathematical analysis and to carry out the on-line learning algorithm for real time application. The simulated results show fast tracking capability and adaptive response by using dynamic back-propagation neurons.

  • PDF

동적시스템의 자동동조를 위한 신경망 알고리즘 응용 (Neural Network Algorithm Application to Auto-tuning of Dynamic Systems)

  • 조현섭
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2006년도 추계학술발표논문집
    • /
    • pp.186-190
    • /
    • 2006
  • "Dynamic Neural Unit"(DNU) based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our methodis different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its trainin.

  • PDF