• Title/Summary/Keyword: Dynamic interface surface shear tester

Search Result 2, Processing Time 0.017 seconds

Dynamic Shear Behaviors on the Normally Consolidation Clay-Geosynthetic Interface (토목섬유-정규압밀점토의 접촉면 동적 전단거동 평가)

  • Bae, Hyogon;Jang, Dongin;Kwak, Changwon;Park, Innjoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.33-39
    • /
    • 2018
  • In this study, important characteristics were identified for the Geosynthetic-soil interface using overburden pressure and saltwater and fresh water to evaluate silt shear behavior of the Geosynthetic-soil interface. In addition, waste landfill can secure spaces for waste disposal in the sea and this spaces can be used for additional facilities which will be necessary in the future. Analysis of behavior characteristics on interface of Geosynthetic-soil shows that, if analyzed using standard consolidometers, the consolidation stress of fresh water increased significantly more than saltwater. When analyzed using cyclic shear apparatus, saltwater and freshwater in both conditions, the displacement value increases as the wire gauges become closer to the lower module, and the shear fracture tends to occur radically under saltwater conditions than fresh water. Therefore, seawater, fresh water that act on the interface of geosynthetic-soil, and installation of facility using geosynthetic should be considered as important parameters that are essential for the dynamic design factor of the water controlling facility.

Dynamic Shear Behavior of the Ground-geosynthetics Interface in the Waste Landfill (폐기물 매립장 지반-토목섬유 접촉면의 동적 전단거동 특성)

  • Jang, Dong-In;Kim, Young-Jun;Kwak, Chang-Won;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.4
    • /
    • pp.5-12
    • /
    • 2015
  • The construction of waste landfill sites has been increased due to recent expansion of various waste. Geotextiles are widely used for the purpose of reinforcement and protection of waste inside the landfill. Geotextile affects the shear behavior of waste landfill which forms the contact surface with soil. In this study, the effect of acidic and alkaline components in leachate has been analyzed through the laboratory experiment on the shear stress reduction of the contact surface of ground-geotextile under the cyclic load. For this purpose, a dynamic contact surface shear tester has been manufactured, and cyclic simple shear tests have been performed using geotextile and soil specimen which were immersed in chemical solutions for 60 and 840 days, respectively. Based on the Disturbed State Concept, the characteristics of shear stress on the contact surface of ground-geotextile due to chemical factors have been identified by the disturbance function.