• Title/Summary/Keyword: Dynamic heat load calculation

Search Result 12, Processing Time 0.026 seconds

A Study on the Cooling Load of South and East Facing Apartment Houses (남향과 동향 집합주택의 냉방부하에 관한 연구)

  • 박근우;이경희
    • Journal of the Korean housing association
    • /
    • v.11 no.2
    • /
    • pp.129-137
    • /
    • 2000
  • This study is about the difference of South and East facing Cooling load of Apartment s Houses using Dynamic Heat-flow Calculation. Therefore, the purpose of this study is come in to use Material for the Thermal Environments of Apartment Houses. The results of the analysis are below. (1) For the peak load of degree hour; The highest is "I" unit and the next high load is H, F, E, C, B, G, D and A unit for the south facing Apartment houses. The higher load is "H" unit and the next high load is I, E, F, B, C, G, D, A Unit for the east facing Apartment houses. (2) For the total load of degree day; The highest load is "I" unit and the next high load is H, G, F, E, C, B, D and A Unit for the south facing Apartment houses. The highest load is "H" unit and the next high load is I, G, E, F, B, C, D, A Unit for the east facing Apartment houses. (3) For the total load of degree day; The highest load is "H" Unit for the east facing Apartment houses and the Lowest load is "A" Unit for the south facing Apartment houses.is "A" Unit for the south facing Apartment houses.nt houses.

  • PDF

Intermittent Heating and Cooling Load Calculation Method -Comparing with ISO 13790

  • Lee, Sang-Hoon
    • Architectural research
    • /
    • v.14 no.1
    • /
    • pp.11-18
    • /
    • 2012
  • College of Architecture, Georgia Institute of Technology, Atlanta, GA, US Abstract The intermittent heating and cooling energy need calculation of the ISO 13790 monthly method was examined. The current ISO 13790 method applies a reduction factor to the continuous heating and cooling need calculation result to derive the intermittent heating and cooling for each month. This paper proposes a method for the intermittent energy need calculation based on the internal mean temperature calculation. The internal temperature calculation procedure was introduced considering the heat-balance taking into account of heat gain, heat loss, and thermal inertia for reduced heating and cooling period. Then, the calculated internal mean temperature was used for the intermittent heating and cooling energy need calculation. The calculation results from the proposed method were compared to the current ISO 13790 method and validated with a dynamic simulation using EnergyPlus. The study indicates that the intermittent heating and cooling energy need calculation method using the proposed model improves transparency of the current ISO 13790 method and draws more rational outcomes in the monthly heating and cooling energy need calculation.

Quantitative Analysis on the Insulating Effect by the Green Roof Planting System (옥상녹화시스템의 식재방식에 따른 단열효과의 정량적 분석)

  • Jang, Hee-Kyong;Cho, Hong-Je;Yeo, In-Ae;Yoon, Seong-Hwan
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.873-876
    • /
    • 2008
  • The purpose of this study was to investigate Green Roof System's thermal performance using dynamic heat load simulation programs related to architectural environment. In results, it is found out that the thermal performance of Green Roof System is stabler than that of roof slab system which means that it is possible to create pleasant indoor environment and save the heating and cooling load.

  • PDF

The Proposal of a Quantitative Evaluation Method on Mixing Loss in the HVAC System Design

  • Yee, Jurng-Jae;Kim, Young-Tae
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.2
    • /
    • pp.62-68
    • /
    • 2001
  • It is a serous subject for energy conservation to prevent the energy loss caused by the mixture of heated and cooled air jets in perimeter and interior zone of a building operated with tow kinds of air-conditioning system simultaneously. The purpose of this paper is to clarify the quantitative and qualitative mechanisms of mixing loss and to propose a evaluation method for it. By using the dynamic heat load calculation, heat extraction load of a typical office building in Busan are calculated. According to the results, numerical simulations based on CFD(Computational Fluid Dynamics) were performed in order to evaluate mixing loss in the physical size of HVAC system. Then, the distributions of air temperature and airflow patterns according to the differences of set-point temperature are analyzed to grasp relations how to influence mixing loss.

  • PDF

A Study on the Life Characteristics of Lightweight Bearings (경량 베어링 수명 특성에 관한 연구)

  • Lee, Choong-Sung;Park, Jong-Won;Lim, Sin-Yeol;Kang, Bo-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.819-825
    • /
    • 2021
  • In the industry, the use of lightweight bearings is increasing to minimize motor power loss, and in particular, the application of next-generation systems such as robots and drones is increasing. Bearing manufacturers are producing lightweight bearings by changing the bearing material, but related researches is insufficient. In this paper, life test and structural analysis were performed for lightweight bearings, and shape parameters and scale parameters were derived based on the life test results. It was confirmed that the shape parameter was 2.52 and the scale parameter was 164 hours. As a result of calculating the dynamic load rating based on the B10 life, it was confirmed that the dynamic load rating of the lightweight bearing was 7% compared to the formula suggested by ISO 281. The reason is that the material of the retainer, which is a major failure part, is a polyamide 66 series that reacts sensitively to heat, so It is judged to show a lot of difference from the ISO 281 calculation formula.

Estimation of Adequate Capacity of Ground Source Heat Pump in Energy-saving Pig Farms Using Building Energy Simulation (BES를 사용한 에너지 절감형 양돈장의 지열히트펌프 적정 용량 산정)

  • Lee, Seong-Won;Oh, Byung-Wook;Park, Kwang-Woo;Seo, Il-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.1
    • /
    • pp.1-13
    • /
    • 2022
  • In Korea, attention is being paid to the use of renewable energy in the livestock industry, and Ground Source Heat Pump (GSHP), which is advantageous for temperature control, is considered as one of the ways to reduce the use of fossil fuels. But GSHP is expensive to install, which proper capacity calculation is required. GSHP capacity is related to its maximum energy load. Energy loads are affected by climate characteristics and time, so dynamic analysis is required. In this study, the optimal capacity of GSHP was calculated by calculating the heating and cooling load of pig farms using BES (Building Energy Simulation) and economic analysis was performed. After designing the inside of the pig house using TRNSYS, one of the commercial programs of the BES technique, the energy load was calculated based on meteorological data. Through the calculated energy load, three heating devices and GSHP used in pig farms were analyzed for economic feasibility. As a result, GSHP's total cost of ownership was the cheapest, but the installation cost was the highest. In order to reduce the initial cost of GSHP, the capacity of GSHP was divided, and a scenario was created in which some of it was used as an auxiliary heating device, and economic analysis was conducted. In this study, a method to calculate the proper capacity of GSHP through dynamic energy analysis was proposed, and it can be used as data necessary to expand the spread of GSHP.

Proposal of Unit Building Method for Calculating Unit Heating Load of Apartment Houses (공동주택 단위난방부하 계산을 위한 단위동법 제안)

  • Yoo Ho-Seon;Chung Joo-Hyuk;Moon Jung -Hwan;Lee Jae-Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.1
    • /
    • pp.68-76
    • /
    • 2007
  • As an alternative approach to evaluate the unit heating load for apartment houses, we newly developed and proposed unit building method. The new method, which calculates the heating load of an apartment building as a whole, conceptually corresponds to integral analysis of building heat loss, while the existing unit apartment method to differential analysis. Four typical building models of Korean-style apartment house and two dynamic load calculation programs were selected to validate the present method under realistically imposed conditions. Eight sets of unit heating load calculated respectively by unit building and unit apartment methods showed excellent agreements regardless of building model and simulation program. It is expected that the unit building method can take the place of the unit apartment method due to fewer modeling assumptions as well as less computational efforts. Additional calculations to investigate the effects of various parameters on unit heating load yield good consistencies with known facts, and re-confirm the validity.

The Proposal of a Quantitative Evaluation Method on Mixing Loss in the HVAC System Design (공기조화설비(HVAC) 설계시 혼합손실의 정량적 평가방안의 제안)

  • 이정재
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.10
    • /
    • pp.879-885
    • /
    • 2000
  • It is a serious subject for energy conservation to prevent the energy loss caused by mixing of heated and cooled air jets in a building which two types of air-conditioning systems are adopted in perimeter and interior zone. The purpose of this paper is to clarify the quantitative and qualitative mechanisms of the mixing loss and to propose preventive methods for it. In this paper, by using the dynamic heat load calculation method, heat extraction loads of a typical office building in Pusan are calculated. According to the results, numerical simulation based on the computational fluid dynamics were peformed in order to measure the mixing loss in physical size HVAC system. Then, the distributions of air temperature and velocity are analyzed in order to grasp the relations by setting temperature differences influence on the mixing loss.

  • PDF

A Study on the Limitation and Improvement of Simple Window Model applied to EnergyPlus (EnergyPlus에 적용된 Simple Window Model의 한계와 개선에 관한 연구)

  • Kim, Tae Ho;Ko, Sung Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.10
    • /
    • pp.515-529
    • /
    • 2017
  • EnergyPlus, which is widely used in various fields, provides Simple Window Model, a window model that can be used practically. However, the results of building load using the model are different from those of the standard model. The main cause of the deviation by Simple Window Model was analyzed to be due to the assumption that all windows were considered as single layer. The purpose of this study is to propose a window model that improves the cause of deviation by Simple Window Model and can be easily calculated from the algebraic relations. The proposed window model solved the heat balance equation algebraically by using seven window characteristic coefficients. The coefficient relationships consisted of the heat transmission coefficient and solar heat gain coefficient as input parameters make practical use and calculation possible. As a result of comparing the deviation between each window model by implementing the dynamic analysis method, the proposed window model showed that the deviation of the total heating/cooling energy consumption was reduced to 1/3 compared to Simple Window Model for one year. Although the maximum energy consumption did not show any significant improvement, the indoor temperature evaluation showed significantly reduced deviation.