• Title/Summary/Keyword: Dynamic flow control

Search Result 578, Processing Time 0.026 seconds

Dynamic Response Analysis of Pneumatic Floating Breakwater Mounted Wave-power Generation System of Oscillating Water Column (진동수주형 파력발전시스템을 탑재한 공기주입식 부유식방파제의 동적거동해석)

  • Lee, Kwang-Ho;Kim, Do-Sam;Jung, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.305-314
    • /
    • 2017
  • Ocean wave energy harvesting is still too expensive despite developing a variety of wave energy converter (WEC) devices. For the cost-effective wave energy harvesting, it can be an effective measure to use existing breakwaters or newly installed breakwaters for both wave control and energy harvesting purposes. In this study, we investigated the functionality of both breakwater and wave-power generator for the oscillating water column (OWC)-type wave energy converter (WEC) installed in a pneumatic floating breakwater, which was originally developed as a floating breakwater. In order to verify the performance of the breakwater as a WEC, the air flow velocity from air-chamber to WEC has to be evaluated properly. Therefore, air flow velocity, wave transformation and motion of floating structure was numerically implemented based on BEM from linear velocity potential theory without considering the compressibility of air within the chamber. Air pressure, meanwhile, was assumed to be fluctuated by the motions of structure and the water level change within air-chamber. The validity of the obtained values can be determined by comparing the previous results from the numerical analysis for different shapes. Based on numerical model results, wave transformation characteristics around OWC system mounted on the fixed and floating breakwaters, and motions of the structure with air flow velocities are investigated. In summary, all numerical results are almost identical to the previous research considering air compressibility. Therefore, it can be concluded that this analysis not considering air compressibility in the air chamber is more efficient and practical method.

An Incident-Responsive Dynamic Control Model for Urban Freeway Corridor (도시고속도로축의 유고감응 동적제어모형의 구축)

  • 유병석;박창호;전경수;김동선
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.4
    • /
    • pp.59-69
    • /
    • 1999
  • A Freeway corridor is a network consisting of a few Primary longitudinal roadways (freeway or major arterial) carrying a major traffic movement with interconnecting roads which offer the motorist alternative paths to his/her destination. Control measures introduced to ameliorate traffic performance in freeway corridors typically include ramp metering at the freeway entrances, and signal control at each intersections. During a severe freeway incident, on-ramp metering usually is not adequate to relieve congestion effectively. Diverting some traffic to the Parallel surface street to make full use of available corridor capacity will be necessary. This is the purpose of the traffic management system. So, an integrated traffic control scheme should include three elements. (a)on-ramp metering, (b)off-ramp diversion and (c)signal timing at surface street intersections. The purpose of this study is to develop an integrated optimal control model in a freeway corridor. By approximating the flow-density relation with a two-segment linear function. the nonlinear optimal control problem can be simplified into a set of Piecewise linear programming models. The formulated optimal-control Problem can be solved in real time using common linear program. In this study, program MPL(ver 4.0) is used to solve the formulated optimal-control problem. Simulation results with TSIS(ver 4.01) for a sample network have demonstrated the merits of the Proposed model and a1gorithm.

  • PDF

Adaptive Cross-Layer Resource Optimization in Heterogeneous Wireless Networks with Multi-Homing User Equipments

  • Wu, Weihua;Yang, Qinghai;Li, Bingbing;Kwak, Kyung Sup
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.784-795
    • /
    • 2016
  • In this paper, we investigate the resource allocation problem in time-varying heterogeneous wireless networks (HetNet) with multi-homing user equipments (UE). The stochastic optimization model is employed to maximize the network utility, which is defined as the difference between the HetNet's throughput and the total energy consumption cost. In harmony with the hierarchical architecture of HetNet, the problem of stochastic optimization of resource allocation is decomposed into two subproblems by the Lyapunov optimization theory, associated with the flow control in transport layer and the power allocation in physical (PHY) layer, respectively. For avoiding the signaling overhead, outdated dynamic information, and scalability issues, the distributed resource allocation method is developed for solving the two subproblems based on the primal-dual decomposition theory. After that, the adaptive resource allocation algorithm is developed to accommodate the timevarying wireless network only according to the current network state information, i.e. the queue state information (QSI) at radio access networks (RAN) and the channel state information (CSI) of RANs-UE links. The tradeoff between network utility and delay is derived, where the increase of delay is approximately linear in V and the increase of network utility is at the speed of 1/V with a control parameter V. Extensive simulations are presented to show the effectiveness of our proposed scheme.

Air-traffic dispatching scheduling in terminal airspace (공항접근영역 항공교통 Dispatching 스케줄링 연구)

  • Jeong, Sun-Jo;Cho, Doo-Hyun;Choi, Han-Lim
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.11
    • /
    • pp.973-980
    • /
    • 2016
  • An air traffic management (ATM) has been studied in a variety of fields to utilize an air traffic capacity efficiently and solve a congested air traffic situation due to an increment of an air traffic demand. In this paper, an air traffic management, which is related with controlling and determining the sequencing of an aircraft approaching to an airport, in terminal control area is studied. This paper focuses on scheduling algorithms with a given problem for the air traffic management with operational constraints, such as a space separation, an overtaking on the same air-route, and a route merge point (a scheduling point). For a real-time calculation, the presented algorithms focus on dispatching heuristic rules which are able to assign tasks in a fast time period with an adequate performance, which can be demonstrated as a proper and realistic scheduling algorithm. A simulation result is presented to illustrate the validity and applicability of the proposed algorithm. Each scheduling rule is analyzed on the same static and dynamic air traffic flow scenario with the ATM Monte-Carlo simulation.

Study on Representation of Pollutants Delivery Process using Watershed Model (수질오염총량관리를 위한 유역모형의 유달 과정 재현방안 연구)

  • Hwang, Ha Sun;Rhee, Han Pil;Lee, Sung Jun;Ahn, Ki Hong;Park, Ji Hyung;Kim, Yong Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.589-599
    • /
    • 2016
  • Implemented since 2004, TPLC (Total Pollution Load Control) is the most powerful water-quality protection program. Recently, uncertainty of prediction using steady state model increased due to changing water environments, and necessity of a dynamic state model, especially the watershed model, gained importance. For application of watershed model on TPLC, it needs to be feasible to adjust the relationship (mass-balance) between discharged loads estimated by technical guidance, and arrived loads based on observed data at the watershed outlet. However, at HSPF, simulation is performed as a semi-distributed model (lumped model) in a sub-basin. Therefore, if the estimated discharged loads from individual pollution source is directly entered as the point source data into the RCHRES module (without delivery ratio), the pollutant load is not reduced properly until it reaches the outlet of the sub-basin. The hypothetic RCHRES generated using the HSPF BMP Reach Toolkit was applied to solve this problem (although this is not the original application of Reach Toolkit). It was observed that the impact of discharged load according to spatial distribution of pollution sources in a sub-basin, could be expressed by multi-segmentation of the hypothetical RCHRES. Thus, the discharged pollutant load could be adjusted easily by modification of the infiltration rate or characteristics of flow control devices.

A Dynamic Queue Manager for Optimizing the Resource and Performance of Mass-call based IN Services in Joint Wired and Wireless Networks (유무선 통합 망에서 대량호 지능망 서비스의 성능 및 자원 최적화를 위한 동적 큐 관리자)

  • 최한옥;안순신
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5B
    • /
    • pp.942-955
    • /
    • 2000
  • This paper proposes enhanced designs of global service logic and information flow for the mass-call based IN service, which increase call completion rates and optimize the resource in joint wired and wireless networks. In order to hanve this logic implemented, we design a Dynamic Queue Manager(DQM) applied to the call queuing service feature in the Service Control Point(SCP). In order to apply this logic to wireless service subscribers as well as wired service subscribers, the service registration flags between the Home Location Register(HLR) and the SCP are managed to notify the DQM of the corresponding service subscribers’ mobility. Hence, we present a dynamic queue management mechanism, which dynamically manages the service group and the queue size based on M/M/c/K queueing model as the wireless subscribers roam the service groups due to their mobility characteristics. In order to determine the queue size allocated by the DQM, we simulator and analyze the relationship between the number of the subscriber’s terminals and the drop rate by considering the service increment rate. The appropriate waiting time in the queue as required is simulated according to the above relationship. Moreover, we design and implement the DQM that includes internal service logic interacting with SIBs(Service Independent building Blocks) and its data structure.

  • PDF

Recurrent Neural Network Modeling of Etch Tool Data: a Preliminary for Fault Inference via Bayesian Networks

  • Nawaz, Javeria;Arshad, Muhammad Zeeshan;Park, Jin-Su;Shin, Sung-Won;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.239-240
    • /
    • 2012
  • With advancements in semiconductor device technologies, manufacturing processes are getting more complex and it became more difficult to maintain tighter process control. As the number of processing step increased for fabricating complex chip structure, potential fault inducing factors are prevail and their allowable margins are continuously reduced. Therefore, one of the key to success in semiconductor manufacturing is highly accurate and fast fault detection and classification at each stage to reduce any undesired variation and identify the cause of the fault. Sensors in the equipment are used to monitor the state of the process. The idea is that whenever there is a fault in the process, it appears as some variation in the output from any of the sensors monitoring the process. These sensors may refer to information about pressure, RF power or gas flow and etc. in the equipment. By relating the data from these sensors to the process condition, any abnormality in the process can be identified, but it still holds some degree of certainty. Our hypothesis in this research is to capture the features of equipment condition data from healthy process library. We can use the health data as a reference for upcoming processes and this is made possible by mathematically modeling of the acquired data. In this work we demonstrate the use of recurrent neural network (RNN) has been used. RNN is a dynamic neural network that makes the output as a function of previous inputs. In our case we have etch equipment tool set data, consisting of 22 parameters and 9 runs. This data was first synchronized using the Dynamic Time Warping (DTW) algorithm. The synchronized data from the sensors in the form of time series is then provided to RNN which trains and restructures itself according to the input and then predicts a value, one step ahead in time, which depends on the past values of data. Eight runs of process data were used to train the network, while in order to check the performance of the network, one run was used as a test input. Next, a mean squared error based probability generating function was used to assign probability of fault in each parameter by comparing the predicted and actual values of the data. In the future we will make use of the Bayesian Networks to classify the detected faults. Bayesian Networks use directed acyclic graphs that relate different parameters through their conditional dependencies in order to find inference among them. The relationships between parameters from the data will be used to generate the structure of Bayesian Network and then posterior probability of different faults will be calculated using inference algorithms.

  • PDF

Analysis of Diversion Rate using Expressway Traffic Data(FTMS, TCS): Focusing on Maesong~Balan IC at Seohaean Expressway (고속도로 교통데이터(FTMS, TCS)를 이용한 경로전환율 분석: 서해안고속도로 매송~발안 구간을 중심으로)

  • Ko, Han-Geom;Choi, Yoon-Hyuk;Oh, Young-Tae;Choi, Kee-Choo
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.3
    • /
    • pp.31-41
    • /
    • 2012
  • Due to growing interests in the distribution of traffic volume through information dissemination such as VMS and traffic broadcasting system, the research on the driver's reaction and effect of the traffic report has continued. In this study, we propose a methodology, which estimates the traffic volume of diversion and the consequential diversion rate using FTMS data and TCS data, and the estimation is based on the analysis of the national highway and IC, in which real-time FTMS and TCS data are established. We also calculate the diversion rate of actual targeted sections and analyze the changes in time and spatial diversion rate. In this study, we define a deviation (considering a deviation due to dynamic properties of traffic conditions) found when the outflow traffic volume is temporarily higher than the average outflow traffic volume on a relevant time slot after providing traffic information. The diverting volume is considered to be caused by the traffic information, and the study determines the ratio of traffic volume on highways to that of route diversion as the diversion rate. The analysis on changes in the diversion rate in accordance with the time flow, the initial change in the diversion rate on upstream IC that first acquires the report on the traffic congestion is significant. After that, the change in the diversion rate on upstream IC affects the route diversion on downstream IC with spatial and time flow, and this again leads the change in upstream IC. Thereby, we confirmed that there is a feedback-control circulation system in the route diversion.

Reconfigurable SoC Design with Hierarchical FSM and Synchronous Dataflow Model (Hierarchical FSM과 Synchronous Dataflow Model을 이용한 재구성 가능한 SoC의 설계)

  • 이성현;유승주;최기영
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.8
    • /
    • pp.619-630
    • /
    • 2003
  • We present a method of runtime configuration scheduling in reconfigurable SoC design. As a model of computation, we use a popular formal model of computation, hierarchical FSM (HFSM) with synchronous dataflow (SDF) model, in short, HFSM-SDF model. In reconfigurable SoC design with HFSM-SDF model, the problem of configuration scheduling becomes challenging due to the dynamic behavior of the system such as concurrent execution of state transitions (by AND relation), complex control flow (HFSM), and complex schedules of SDF actor firing. This makes it hard to hide configuration latency efficiently with compile-time static configuration scheduling. To resolve the problem, it is necessary to know the exact order of required configurations during runtime and to perform runtime configuration scheduling. To obtain the exact order of configurations, we exploit the inherent property of HFSM-SDF that the execution order of SDF actors can be determined before executing the state transition of top FSM. After obtaining the order information and storing it in the ready configuration queue (ready CQ), we execute the state transition. During the execution, whenever there is FPGA resource available, a new configuration is selected from the ready CQ and fetched by the runtime configuration scheduler. We applied the method to an MPEG4 decoder and IS95 design and obtained up to 21.8% improvement in system runtime with a negligible overhead of memory usage.

Detecting TOCTOU Race Condition on UNIX Kernel Based File System through Binary Analysis (바이너리 분석을 통한 UNIX 커널 기반 File System의 TOCTOU Race Condition 탐지)

  • Lee, SeokWon;Jin, Wen-Hui;Oh, Heekuck
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.4
    • /
    • pp.701-713
    • /
    • 2021
  • Race Condition is a vulnerability in which two or more processes input or manipulate a common resource at the same time, resulting in unintended results. This vulnerability can lead to problems such as denial of service, elevation of privilege. When a vulnerability occurs in software, the relevant information is documented, but often the cause of the vulnerability or the source code is not disclosed. In this case, analysis at the binary level is necessary to detect the vulnerability. This paper aims to detect the Time-Of-Check Time-Of-Use (TOCTOU) Race Condition vulnerability of UNIX kernel-based File System at the binary level. So far, various detection techniques of static/dynamic analysis techniques have been studied for the vulnerability. Existing vulnerability detection tools using static analysis detect through source code analysis, and there are currently few studies conducted at the binary level. In this paper, we propose a method for detecting TOCTOU Race Condition in File System based on Control Flow Graph and Call Graph through Binary Analysis Platform (BAP), a binary static analysis tool.